Abstract:
The present invention relates to an adhesive composition for an optical member, an optical member comprising the same, and an optical display device comprising the same, wherein the composition comprises a (meth)acryl-based copolymer containing an acetoacetoxy group, a metal chelate curing agent, and a tri- or higher functional isocyanate-based curing agent, the (meth)acryl-based copolymer having an acid value of 0 mgKOH/g.
Abstract:
An adhesive film for polarizing plates, a polarizing plate, and an optical display, the adhesive film being prepared from an adhesive composition including an isocyanate crosslinking agent and an imide crosslinking agent, and having a ΔG′ of about 50% to about 80%, ΔG′ being represented by Equation 1: ΔG′=(G1−G2)/G1×100 [Equation 1] in which G1 is a storage modulus of the adhesive film for polarizing plates as measured at 25° C., and G2 is a storage modulus of the adhesive film for polarizing plates as measured at 85° C.
Abstract:
Provided are an adhesive composition for a polarizing plate, a polarizing plate, and an optical display device, the adhesive composition comprising an epoxy-based compound, a (meth)acrylate-based compound, a photo-acid generator, and an optical radical initiator, the (meth)acrylate-based compound comprising a mixture of a bifunctional (meth)acrylate-based compound and a monofunctional (meth)acrylate-based compound having a hydrophobic functional group, wherein the adhesive strength measured after the adhesive composition for a polarizing plate is separately applied to a PET film, a TAC film, and a COP film, to which a polarizer is then bound, followed by photo-curing, is about 200 gf/inch or more.
Abstract:
A polarizing plate includes a polarizing film, a first adhesive layer or a bonding layer, a retardation layer, and a third adhesive layer, and includes: a UV absorber comprising an indole UV absorber, a phenylbenzotriazole UV absorber, and/or a triazine UV absorber, wherein the UV absorber has a maximum absorption wavelength of 370 nm or higher, the polarizing plate has a light transmittance of 5% or less in a wavelength range of about 400 nm to about 405 nm and a light transmittance of 35% or higher in a wavelength range of about 440 nm to about 450 nm, the first adhesive layer has a modulus of 1×105 Pa or higher at 80° C. and a modulus of 1×105 Pa or higher at 30° C., and the third adhesive layer has a modulus of 5×104 Pa to 1×106 Pa at 80° C. and a modulus of 1×105 Pa to 3×106 Pa at 30° C.
Abstract:
An adhesive film of the present invention comprises a (meth)acrylate-based copolymer and a cross-linking agent, and a gel fraction thereof is approximately 50-95%, and a ratio of change G′ in storage modulus thereof, represented by the following formula 1, is 20% or less. [Formula 1] G′=(G7−G1)/G1×100 (In formula 1, G1 is a storage modulus at 25° C. when the adhesive film is matured at 23° C. and a relative humidity (RH) of 55% for one day, and G7 represents a storage modulus at 25° C. when the adhesive film is matured at 23° C. and an RH of 55% for seven days.)
Abstract:
A polarizing plate includes a polarizer, a bonding layer on an upper surface of the polarizer, a protective film on an upper surface of the bonding layer and having a moisture transmittance of about 30 g/m2·24 hr or less at 40° C. and 90% relative humidity (RH), and a barrier layer on a lower surface of the polarizer and formed of a barrier layer composition including an alicyclic epoxy resin having a glass transition temperature of about 200° C. or more. The polarizing plate may have a light transmittance variation rate of 3% or less, as calculated by Equation 1: Light transmittance variation rate=|T0−T500|/T0×100 (1), where T0 is an initial light transmittance and T500 is a light transmittance after 500 hours as set forth herein.
Abstract:
Provided are: a polarizing plate; a method for manufacturing the polarizing plate; and an optical display device comprising the same, the polarizing plate having an adhesive layer, a barrier layer, a polarizer, and a protective film, which are sequentially stacked, wherein the barrier layer is formed from a barrier layer composition containing an epoxy-based compound and an antimony sulfonium-based initiator.
Abstract:
An adhesive film for polarizing plates, a polarizing plate including the same, and an optical display including the same are provided. An adhesive film for polarizing plates is formed of an adhesive composition including a (meth)acrylic copolymer and a cellulose ester binder. The (meth)acrylic copolymer contains an alkyl group, a hydroxyl group, an alicyclic group, and a hetero-alicyclic group. The adhesive film has a modulus at 30° C. of about 100,000 Pa or more.
Abstract:
An adhesive film and an optical display, the adhesive film being prepared from an adhesive composition that includes a (meth)acrylic copolymer, wherein the adhesive film has an elongation of about 750% to about 3,000%, and satisfies the following Equation 1: PB/PY=about 3.0 to about 20, wherein PB is a break point in gf of the adhesive film and PY is a yield point in gf of the adhesive film.
Abstract:
An adhesive composition for polarizing plates includes a (meth)acrylic copolymer and a biphenyl group-containing photocuring agent. A polarizing plate includes an adhesive layer formed of the adhesive composition An optical display includes the polarizing plate.