摘要:
A chemically amplified positive resist dry film to be formed on a support film contains 5-40 wt % of a component having a boiling point of 55-250° C. under atmospheric pressure. The resist dry film having flexibility and dimensional stability can be prepared through simple steps. The resist dry film can be efficiently and briefly laid on an article and processed to form a pattern.
摘要:
A modified novolak phenolic resin is obtained by reacting a novolak phenolic resin containing at least 50 wt % of p-cresol with a crosslinker. This method increases the molecular weight of the existing novolak phenolic resin containing at least 50 wt % of p-cresol to such a level that the resulting modified novolak phenolic resin has heat resistance enough for the photoresist application.
摘要:
A chemically amplified positive resist composition is provided comprising a specific alkali-soluble polymer adapted to turn soluble in alkaline aqueous solution under the action of acid as base resin, an alkali-soluble polymer, and a photoacid generator in an organic solvent. The composition forms a resist film which can be briefly developed to form a pattern at a high sensitivity without generating dimples in pattern sidewalls.
摘要:
A chemically amplified positive resist composition is provided comprising a substantially alkali-insoluble polymer having an acid labile group-protected acidic functional group, a poly(meth)acrylate polymer having Mw of 1,000-500,000, and an acid generator in a solvent. The composition forms on a substrate a resist film of 5-100 μm thick which can be briefly developed to form a pattern at a high sensitivity and a high degree of removal or dissolution to bottom.
摘要:
A chemically amplified positive resist dry film to be formed on a support film contains 5-40 wt % of a component having a boiling point of 55-250° C. under atmospheric pressure. The resist dry film having flexibility and dimensional stability can be prepared through simple steps. The resist dry film can be efficiently and briefly laid on an article and processed to form a pattern.
摘要:
Provided is a photosensitive resin composition which comprises (A) a polymer comprising repeating units represented by formula (A1) and at least one kind of repeating units selected from among repeating units represented by formula (A2) and repeating units represented by formula (A3), (B) an epoxy compound containing four or more epoxy groups on average in the molecule, (C) a photoacid generator, (D) a benzotriazole compound and/or an imidazole compound, and (E) an organic solvent.
摘要:
A chemically amplified positive resist composition is provided comprising a specific alkali-soluble polymer adapted to turn soluble in alkaline aqueous solution under the action of acid as base resin, an alkali-soluble polymer, and a photoacid generator in an organic solvent. The composition forms a resist film which can be briefly developed to form a pattern at a high sensitivity without generating dimples in pattern sidewalls.
摘要:
A laminate comprising a thermoplastic film and a chemically amplified positive resist film thereon is provided, the resist film comprising (A) a base polymer having a hydroxyphenyl group and a protective group, the polymer turning alkali soluble as a result of the protective group being eliminated under the action of acid, (B) a photoacid generator, (C) an organic solvent, and (D) a polymer having an ester bond in its backbone. The resist film may be transferred to a stepped support without forming voids.
摘要:
A laminate comprising a thermoplastic film and a positive resist film is provided, the positive resist film comprising (A) a novolak resin-naphthoquinone diazide (NQD) base resin composition, (B) a polyester, and (C) 3-30 wt % of an organic solvent. The resist film may be transferred to a stepped support without forming voids.
摘要:
A micro-structure is manufactured by patterning a sacrificial film, forming an inorganic material film on the pattern, providing the inorganic material film with an aperture, and etching away the sacrificial film pattern through the aperture to define a space having the contour of the pattern. The patterning stage includes the steps of (A) forming a sacrificial film using a composition comprising a cresol novolac resin and a crosslinker, (B) exposing patternwise the film to first high-energy radiation, (C) developing, and (D) exposing the sacrificial film pattern to second high-energy radiation and heat treating for thereby forming crosslinks within the cresol novolac resin.