Abstract:
A memory device includes a memory cell area including a plurality of cell blocks divided into a plurality of normal cell blocks, at least one ECC cell block, and at least one redundancy cell block, the plurality of cell blocks being configured to output data and error correction codes; an error correction circuit configured to generate error-corrected data by correcting errors in the data using the error correction codes; a first switch group configured to output the error-corrected data while performing, according to first repair control information, a shifting operation on the error-corrected data; and a second switch group configured to transfer the data from the memory cell area to the error correction circuit while performing, according to second repair control information, a zero-padding operation on the data output from one of the cell blocks.
Abstract:
A semiconductor device includes a memory bank including a first memory block, a second memory block, and a redundancy memory block, and a column line selection circuit configured, when a fail occurs in a first column line of the first memory block, to replace the first column line of the first memory block with a first redundancy line of the redundancy memory block, and replace a second column line of the second memory block with a second redundancy line of the redundancy memory block.
Abstract:
A semiconductor device may include a power control signal generator and a sense amplifier circuit. The power control signal generator may generate a first power control signal, an enablement moment of the first power control signal controlled according to a logic level combination of temperature code signals in response to a mode signal. The sense amplifier circuit may generate a first power signal driven in response to the first power control signal and may generate a second power signal driven in response to a second power control signal. The sense amplifier circuit may sense and amplify a level of a bit line using the first power signal and the second power signal.
Abstract:
A semiconductor apparatus may include a logic circuit, a power gating circuit and a power gating control system. The logic circuit may operate by receiving a first power supply voltage and a second power supply voltage, and may retain an output signal at a predetermined logic value during a standby operation of the semiconductor apparatus. The power gating circuit may apply the first power supply voltage and the second power supply voltage to the logic circuit when a gating control signal is in an enabled state. The power gating control system may test whether the output signal of the logic circuit retains the predetermined logic value when the power gating circuit is turned off, and may generate the gating control signal based on a test result and an operation mode of the semiconductor apparatus.
Abstract:
A semiconductor device may include a power control signal generator and a sense amplifier circuit. The power control signal generator may generate a first power control signal, an enablement moment of the first power control signal controlled according to a logic level combination of temperature code signals in response to a mode signal. The sense amplifier circuit may generate a first power signal driven in response to the first power control signal and may generate a second power signal driven in response to a second power control signal. The sense amplifier circuit may sense and amplify a level of a bit line using the first power signal and the second power signal.
Abstract:
An internal voltage generation circuit may include a temperature information generation unit configured to generate a temperature code having a code value corresponding to a temperature. The temperature information generation unit may include a process variation information generation unit configured to generate a process code having a code value corresponding to a process variation. The temperature information generation unit may include a code combination unit configured to generate a combination code in response to a ratio control signal, the temperature code, and the process code. The temperature information generation unit may include an internal voltage generation unit configured to generate an internal voltage having a voltage level corresponding to a code value of the combination code.
Abstract:
An apparatus for adjusting an internal voltage includes a device characteristic detection circuit which detects a device characteristic, compares the device characteristic with an external clock, and generates a comparison signal, and an internal voltage adjustment circuit which receives an adjustment code generated based on the comparison signal, adjusts a level of an internal voltage, and generates a level-adjusted internal voltage.
Abstract:
A semiconductor memory device may include a power control signal generator and a sense amplifier circuit. The power control signal generator may generate a first power control signal, the first power control signal having an enablement period that may be controlled in response to a temperature signal having a cycle time. The cycle time may be controlled according to a mode signal and an internal temperature. The sense amplifier circuit may generate a first power signal driven to have a first drive voltage in response to the first power control signal. In addition, the sense amplifier circuit may sense and amplify a level of a bit line using the first power signal as a power supply voltage.
Abstract:
A test circuit of a semiconductor apparatus includes a plurality of memory blocks, and a comparison block configured to compare data of two memory blocks, wherein the two of the plurality of memory blocks do not share word lines.