Abstract:
The DLL comprises a coarse delay line configured to have a plurality of unit delays and delay an reference dock to output a delayed clock, a fine delay line configured to delay the delayed clock to output a delayed output clock, a replica delay unit configured to delay the delayed output clock by an expected modeling value to output a feedback clock, a phase detection unit configured to compare a phase of the feedback clock with a phase of the reference clock to generate first to third phase detection signals based on a result of the comparison, a locking detection unit configured to output a locking signal by selecting a first locking detection signal or a second locking detection signal, and a control unit configured to control the coarse and fine delay lines in response to the locking signal and the first phase detection signal.
Abstract:
A semiconductor device includes a first internal clock generation unit suitable for generating a first internal clock for synchronizing a first signal in response to a first external clock; a second internal clock generation unit suitable for generating a second internal clock for synchronizing a second signal in response to a second external clock; and a delay amount information provision unit suitable for providing delay amount information corresponding to a phase difference between the first internal clock and the second internal clock to an external device.
Abstract:
A noise detection circuit includes a first delay unit suitable for delaying a periodic wave to output a delayed periodic wave, a first divider unit suitable for dividing the delayed periodic wave to output a first periodic wave, a second divider unit suitable for dividing the periodic wave to output a divided periodic wave, a second delay unit suitable for delaying the divided periodic wave to output a second periodic wave, and a detection unit suitable for comparing the first periodic wave with the second periodic wave and outputting a noise detection signal.
Abstract:
A phase-locked loop includes a phase detection unit configured to compare the phase of a feedback clock with the phase of an input clock, a clock generation unit configured to adjust the frequency of a first clock based on a result of the comparison of the phase detection unit, a first division unit configured to generate an output clock by dividing the first clock at a first division ratio in test mode and generate the output clock by dividing the first clock at a second division ratio that is lower than the first division ratio in normal mode, and a second division unit configured to generate the feedback clock by dividing the output clock.