摘要:
[Object] To provide a control system, an information processing device, a control method, and a program capable of capturing a clear iris image having no reflected light of illumination without interfering with a user's field of view.[Solution] A control system including: an illumination section configured to irradiate any one of left and right eyes with light; an imaging section configured to image the other eye different from the one of the left and right eyes; and a control section configured to perform control to cause the imaging section to image the other eye while the illumination section is irradiating the one of the left and right eyes with light.
摘要:
Provided is an information processing apparatus including: a biometric information authentication unit that authenticates biometric information identified from each of a plurality of captured images of an eye of a user of different sight line directions, on the basis of reference images of the eye of the user of the respective sight line directions; and an authentication result combining unit that combines authentication results by the biometric information authentication unit.
摘要:
There is provided an imaging apparatus that includes a photoelectric conversion section, a retention section, and first and second gates. The photoelectric conversion section is configured to convert a received light into charge. The retention section is configured to retain the charge provided by the photoelectric conversion section. The first and second gates are provided between the photoelectric conversion section and the retention section, the first and second gates being turned ON for transferring the charge from the photoelectric conversion section to the retention section, and the second gate being turned OFF after the first gate is turned OFF.
摘要:
A solid-state imaging device is capable of simplifying the pixel structure to reduce the pixel size and capable of suppressing the variation in the characteristics between the pixels when a plurality of output systems is provided. A unit cell includes two pixels. Upper and lower photoelectric converters and, transfer transistors and connected to the upper and lower photoelectric converters, respectively, a reset transistor, and an amplifying transistor form the two pixels. A full-face signal line is connected to the respective drains of the reset transistor and the amplifying transistor. Controlling the full-face signal line, along with transfer signal lines and a reset signal line, to read out signals realizes the simplification of the wiring in the pixel, the reduction of the pixel size, and so on.
摘要:
A solid-state imaging device is provided, which includes a photodiode having a first conductivity type semiconductor area that is dividedly formed for each pixel; a first conductivity type transfer gate electrode formed on the semiconductor substrate via a gate insulating layer in an area neighboring the photodiode, and transmitting signal charges generated and accumulated in the photodiode; a signal reading unit reading a voltage which corresponds to the signal charge or the signal charge; and an inversion layer induction electrode formed on the semiconductor substrate via the gate insulating layer in an area covering a portion or the whole of the photodiode, and composed of a conductor or a semiconductor having a work function. An inversion layer is induced, which is formed by accumulating a second conductivity type carrier on a surface of the inversion layer induction electrode side of the semiconductor area through the inversion layer induction electrode.
摘要:
A solid-state imaging element includes a pixel having a photoelectric conversion section and a side pinning layer. The photoelectric conversion section is formed in a semiconductor substrate. The side pinning layer is formed on a side of the photoelectric conversion section. The side pinning layer is formed by performing ion implantation in a state of a trench being open, the trench being formed in a part on a side of a region in which the photoelectric conversion section is formed.
摘要:
There is provided a solid-state imaging device including a pixel array unit in which pixels are arrayed in a two-dimensional manner, each of the pixels including a plurality of photoelectric conversion elements and a floating diffusion configured to accumulate an electric charge from the plurality of photoelectric conversion elements, wherein the floating diffusion is shared by at least two or more of the photoelectric conversion elements, and wherein one or more of the plurality of photoelectric conversion elements include a transfer gate configured to transfer an electric charge between the photoelectric conversion elements that are adjacent.
摘要:
Disclosed herein is a solid-state imaging element including: a photoelectric conversion section configured to generate a charge according to received light; and a plurality of active elements configured to perform predetermined operation on the charge generated in the photoelectric conversion section, wherein a part of a gate electrode possessed by one of the active elements has a projection part buried in a substrate in which the photoelectric conversion section is formed. Thus, it is possible to suppress the occurrence of noise, and provide excellent image quality with a smaller area.
摘要:
A photoelectric converter generates a charge corresponding to the exposure amount during an exposure period. The generated-charge retention portion and the output charge retention portion retain the charge. The generated-charge transfer portion transfers the charge from the photoelectric converter to the generated-charge retention portion to perform the transfer after the elapse of the exposure period. The retained-charge transfer portion transfers the charge retained in the generated-charge retention portion to the output charge retention portion to perform the transfer. The generated-charge retention gate portion applies a control voltage that is a voltage for controlling potential of the generated-charge retention portion to the generated-charge retention portion during a period of the transfer and the retained-charge transfer, applies a bias voltage that is a voltage having a polarity different from the control voltage to the generated-charge retention portion during a period different from the period of the generated-charge transfer and the retained-charge transfer.
摘要:
The present technology relates to a solid state imaging device capable of providing a solid state imaging device that does not cause deterioration of image quality due to an increase in reading speed of a pixel signal, and an imaging apparatus. In a pixel array block in which a plurality of pixels are two-dimensionally arrayed, each of the pixels including: a photoelectric conversion device; a plurality of transistors to be used for reading a signal from the photoelectric conversion device; and wiring for driving the transistors, a plurality of pixel output lines are provided for each one column of the plurality of pixels two-dimensionally arrayed, and the plurality of pixel output lines from the pixels are arranged separately in a plurality of wiring layers. The present technology can be applied to, for example, a CMOS image sensor.