Abstract:
Devices, systems and methods are used to decouple proximal movement of a catheter supply lead or tubing from the tissue-embedded catheter. A catheter decoupling device comprises a catheter hub, sled and track, wherein the hub comprises a proximal end configured to receive a catheter fluid supply device, and a distal end configured to receive a catheter, the sled receives and retains the hub, the track receives and retains the hub; and, the hub has a limited range of back-and-forth motion relative to the track.
Abstract:
Devices, systems and methods are used to decouple proximal movement of a catheter supply lead or tubing from the tissue-embedded catheter. A catheter decoupling device comprises a catheter hub, sled and track, wherein the hub comprises a proximal end configured to receive a catheter fluid supply device, and a distal end configured to receive a catheter, the sled receives and retains the hub, the track receives and retains the hub; and, the hub has a limited range of back-and-forth motion relative to the track.
Abstract:
The invention relates to medical devices and, particularly, catheter medical devices. In an aspect is a nerve block catheter system comprising a dual-sheath catheter comprising an inner sheath and an outer sheath, wherein distal ends of the sheaths are connected, the inner sheath defines a fluid delivery lumen, and the outer sheath comprises a tissue lock movable between a collapsed position and an extended position, wherein the tissue lock forms a reversible tissue anchor when in the extended position, and an actuator connected to the proximate end of the catheter and configured to activate the tissue lock by sliding the outer sheath length-wise relative to the inner sheath.
Abstract:
The invention relates to medical devices and, particularly, catheter medical devices. In an aspect is a nerve block catheter system comprising a dual-sheath catheter comprising an inner sheath and an outer sheath, wherein distal ends of the sheaths are connected, the inner sheath defines a fluid delivery lumen, and the outer sheath comprises a tissue lock movable between a collapsed position and an extended position, wherein the tissue lock forms a reversible tissue anchor when in the extended position, and an actuator connected to the proximate end of the catheter and configured to activate the tissue lock by sliding the outer sheath length-wise relative to the inner sheath.
Abstract:
An intubation system of the present disclosure intubates based on an airway pattern indicating a trachea opening. The airway pattern is determined from analysis of airway data detected by a trachea identifying device disposed on a moveable guide stylet of the intubation system. A navigation element is generated based on the airway pattern. In one embodiment, the airway pattern is a gas exchange pattern indicating a trachea opening. In another embodiment, the trachea opening transition pattern is a topographic pattern indicating a trachea opening. The guide stylet is capable of moving in a plurality of degrees of freedom in the airway following the guidance from the navigation element.
Abstract:
An intubation system of the present disclosure intubates based on an airway pattern indicating a trachea opening. The airway pattern is determined from analysis of airway data detected by a trachea identifying device disposed on a moveable guide stylet of the intubation system. A navigation element is generated based on the airway pattern. In one embodiment, the airway pattern is a gas exchange pattern indicating a trachea opening. In another embodiment, the trachea opening transition pattern is a topographic pattern indicating a trachea opening. The guide stylet is capable of moving in a plurality of degrees of freedom in the airway following the guidance from the navigation element.
Abstract:
An intubation system of the present disclosure intubates based on an airway pattern indicating a trachea opening. The airway pattern is determined from analysis of airway data detected by a trachea identifying device disposed on a moveable guide stylet of the intubation system. A navigation element is generated based on the airway pattern. In one embodiment, the airway pattern is a gas exchange pattern indicating a trachea opening. In another embodiment, the trachea opening transition pattern is a topographic pattern indicating a trachea opening. The guide stylet is capable of moving in a plurality of degrees of freedom in the airway following the guidance from the navigation element.
Abstract:
A nerve block catheter system employs an indwelling, flexible catheter comprising a tissue lock to retain the catheter tip in pharmacologically proximity to a target nerve and optionally, a decoupler that insulates the tip of the catheter from proximal tissue movement.
Abstract:
Various methods and systems for delivery of an ETT for intubation are provided. In one example, an ETT delivery system includes a rail system for guiding insertion of an ETT and at least partially defining the motion of the ETT. The ETT delivery system further may include a video laryngoscope blade coupled to the rail system and a delivery mechanism. In some examples, the ETT delivery system further includes a positioner configured to adjust the motion of the ETT. As a further example, the ETT delivery system may include a swing arm and a guide rail to at least partially define the motion of the swing arm. Further, a drive-down mechanism may effect motion of the swing arm. As another embodiment, a rail system, a disposable blade and a positioner may be provided. Further, a delivery mechanism may be operatively linked with the integrated rail system.
Abstract:
Methods for diagnosing sleep apnea are provided herein. In at least one example, a method may be provided including receiving airway image data from a remote end imaging sensor coupled to a nasal tube disposed within an upper airway above a constriction point, and analyzing the airway image data and displaying in a sleep study report the airway image data to identify airway closures related to obstructive sleep apnea.