Abstract:
A method is for making a photonic chip including EO devices having multiple thicknesses. The method may include forming a first semiconductor layer over a semiconductor film, forming a second semiconductor layer over the first semiconductor layer, and forming a mask layer over the second semiconductor layer. The method may include performing a first selective etching of the mask layer to provide initial alignment trenches, performing a second etching, aligned with some of the initial alignment trenches and using the first semiconductor layer as an etch stop, to provide multi-level trenches, and filling the multi-level trenches to make the EO devices having multiple thicknesses.
Abstract:
A method of manufacturing an integrated circuit including photonic components on a silicon layer and a laser made of a III-V group material includes providing the silicon layer positioned on a first insulating layer that is positioned on a support. First trenches are etched through the silicon layer and stop on the first insulating layer, and the first trenches are covered with a silicon nitride layer. Second trenches are etched through a portion of the silicon layer, and the first and second trenches are filled with silicon oxide, which are planarized. The method further includes removing the support and the first insulating layer, and bonding a wafer including a III-V group heterostructure on the rear surface of the silicon layer.
Abstract:
A photonic integrated circuit includes a first insulating region encapsulating at least one metallization level, a second insulating region at least partially encapsulating a gain medium of a laser source, and a stacked structure placed between the two insulating regions. The stacked structure includes a first polycrystalline or single-crystal silicon layer, a second polycrystalline or single-crystal silicon layer, an intermediate layer optically compatible with the wavelength of the laser source and selectively etchable relative to silicon and that separates the first layer from a first portion of the second layer, and the gain medium facing at least one portion of the first layer. The first layer, the intermediate layer, and the first portion of the second layer form an assembly containing a resonant cavity and a waveguide, which are optically coupled to the gain medium, and a second portion of the second layer containing at least one other photonic component.
Abstract:
An E/O phase modulator may include a waveguide having an insulating substrate, a single-crystal silicon strip and a polysilicon strip of a same thickness and doped with opposite conductivity types above the insulating substrate, and an insulating interface layer between the single-crystal silicon strip and polysilicon strip. Each of the single-crystal silicon strip and polysilicon strip may be laterally continued by a respective extension, and a respective electrical contact coupled to each extension.