Abstract:
A DC-DC converter includes an interface to receive data having voltage values. A first circuit carries out a voltage transition from a previously received voltage value to a received voltage value (VSEL). A second circuit activates or inactivates the first circuit in response to an activation signal or a stop signal provided by the interface. A third circuit configures the second circuit so that, when new data including a new voltage value is received during a voltage transition, the second circuit interprets the stop signal as an activation signal for the first circuit to carry out a new voltage transition. The setting circuit sets at least one parameter needed by the first circuit to carry out the new voltage transition in response to the new data and before the end of the new voltage transition.
Abstract:
A processing system comprising a first sub-circuit configured to be powered by a first supply voltage and a second sub-circuit configured to be powered by a second supply voltage. The first sub-circuit comprises a general-purpose input/output register. The second sub-circuit comprises: a storage circuit configured to selectively store configuration data from the general-purpose input/output register; an input/output interface, at least one peripheral and a selection circuits to exchange signals of the peripherals, and the stored configuration data with the input/output interface. A power management circuit is configured to manage a normal operating mode, and a low-power mode during which the configuration data are maintained stored and the first sub-circuit is switched off. The power management circuit activates the low-power mode in response to receiving a commands, and resumes the normal operating mode in response to a wake-up events.
Abstract:
A digital filter with a pipeline structure includes processing structures timed by respective clock signals. Each processing structure in turn is formed by a number of processing modules for processing input samples. A phase generator aligns the processing modules with the input samples so that each input sample is processed by a respective one of the processing modules. An up-sampling buffer and a down-sampling buffer are used when the processing structures operate at different clock frequencies (thus implementing different clock domains) so as to convert signal samples between the clock domains for processing in the processing structures.
Abstract:
A digital filter with a pipeline structure includes processing structures timed by respective clock signals. Each processing structure in turn is formed by a number of processing modules for processing input samples. A phase generator aligns the processing modules with the input samples so that each input sample is processed by a respective one of the processing modules. An up-sampling buffer and a down-sampling buffer are used when the processing structures operate at different clock frequencies (thus implementing different clock domains) so as to convert signal samples between the clock domains for processing in the processing structures.
Abstract:
A digital filter with a pipeline structure includes processing structures timed by respective clock signals. Each processing structure in turn is formed by a number of processing modules for processing input samples. A phase generator aligns the processing modules with the input samples so that each input sample is processed by a respective one of the processing modules. An up-sampling buffer and a down-sampling buffer are used when the processing structures operate at different clock frequencies (thus implementing different clock domains) so as to convert signal samples between the clock domains for processing in the processing structures.
Abstract:
A processing system comprising a first sub-circuit configured to be powered by a first supply voltage and a second sub-circuit configured to be powered by a second supply voltage. The first sub-circuit comprises a general-purpose input/out register. The second sub-circuit comprises: a storage circuit configured to selectively store configuration data from the general-purpose input/out register; an input/output interface, at least one peripheral and a selection circuits to exchange signals of the peripherals, and the stored configuration data with the input/output interface. A power management circuit is configured to manage a normal operating mode, and a low-power mode during which the configuration data are maintained stored and the first sub-circuit is switched off. The power management circuit activates the low-power mode in response to receiving a command, and resumes the normal operating mode in response to a wake-up event.
Abstract:
A processing system comprising a first sub-circuit configured to be powered by a first supply voltage and a second sub-circuit configured to be powered by a second supply voltage. The first sub-circuit comprises a general-purpose input/out register. The second sub-circuit comprises: a storage circuit configured to selectively store configuration data from the general-purpose input/out register; an input/output interface, at least one peripheral and a selection circuits to exchange signals of the peripherals, and the stored configuration data with the input/output interface. A power management circuit is configured to manage a normal operating mode, and a low-power mode during which the configuration data are maintained stored and the first sub-circuit is switched off. The power management circuit activates the low-power mode in response to receiving a command, and resumes the normal operating mode in response to a wake-up event.
Abstract:
A battery charger includes an input supply terminal configured to receive a supply signal and a battery terminal configured to be connected to a battery. A supply switching circuit is arranged between the battery terminal and the input supply terminal. A control device generates a control signal to control operation of the supply switching circuit. A fuel gauge device provide a digital estimation of a voltage signal across the battery. A correction device modifies the control signal in response to the digital estimation of the voltage signal across the battery if that digital estimation is outside of a value range between two thresholds.
Abstract:
A digital filter with a pipeline structure includes processing structures timed by respective clock signals. Each processing structure in turn is formed by a number of processing modules for processing input samples. A phase generator aligns the processing modules with the input samples so that each input sample is processed by a respective one of the processing modules. An up-sampling buffer and a down-sampling buffer are used when the processing structures operate at different clock frequencies (thus implementing different clock domains) so as to convert signal samples between the clock domains for processing in the processing structures.
Abstract:
A DC-DC converter includes an interface to receive data having voltage values. A first circuit carries out a voltage transition from a previously received voltage value to a received voltage value (VSEL). A second circuit activates or inactivates the first circuit in response to an activation signal or a stop signal provided by the interface. A third circuit configures the second circuit so that, when new data including a new voltage value is received during a voltage transition, the second circuit interprets the stop signal as an activation signal for the first circuit to carry out a new voltage transition. The setting circuit sets at least one parameter needed by the first circuit to carry out the new voltage transition in response to the new data and before the end of the new voltage transition.