Abstract:
Provided are a method of forming a waveguide facet and a photonics device using the method. The method includes forming at least one optical device die including waveguides on a substrate, forming at least one trench in a lower surface of the substrate, and cleaving the substrate to form facets of the waveguides over the trench. The trench is formed along a direction crossing the waveguides under the waveguides.
Abstract:
Provided is a photonics device. The photonics device includes a distribution Bragg reflector (DBR), first and second waveguides disposed at both sides of the DBR, first lenses disposed between the DBR and the first waveguides, and second lenses disposed between the DBR and the second waveguides.
Abstract:
Provided are an optical device and a method of fabricating the same. The optical device includes: a substrate; and a ring resonator on the substrate. The ring resonator includes: a cladding layer including a lower cladding layer and an upper cladding layer on the substrate; a core including a plurality of rings between the lower cladding layer and the upper cladding layer; and an embeded layer interposed between the core and the cladding layer and having a refractive index less than that of the core and more than that of the cladding layer.
Abstract:
Provided is an electro-optic modulating device. The electro-optic modulating device includes an optical waveguide with a vertical structure and sidewalls of the vertical structure are used to configure a junction.
Abstract:
Provided is a ring resonator including first and second waveguides disposed spaced apart from each other, on a substrate, and at least one channel including at least one ring waveguide arranged in a row between the first and second waveguides. The first and second waveguides and the ring waveguide may be formed of silicon, a width of the ring waveguide may range from 0.7 μm to 1.5 μm, a height of the ring waveguide may range from 150 nm to 300 nm, and a space between the first and second waveguides and the ring waveguide most adjacent thereto may range from 250 nm to 1 mm.
Abstract:
Provided are a method of fabricating a semiconductor device unconstrained by optical limit and an apparatus of fabricating the semiconductor device. The method includes: forming an etch target layer on a substrate; forming a hard mask layer on the etch target layer; forming first mask patterns on the hard mask layer; forming first spacers on sidewalls of the first mask patterns; forming hard mask patterns having an opening by using the first mask patterns and the first spacers as a mask to etch the hard mask layer; aligning second mask patterns on the hard mask patterns to fill the opening; forming second spacers on sidewalls of the second mask patterns; forming fine mask patterns by using the second mask patterns and the second spacers as a mask to etch the hard mask patterns; and forming fine patterns by using the fine mask patterns as a mask to etch the etch target layer.
Abstract:
Provided is a method of tuning a resonance wavelength of a ring resonator. The method of tuning the resonance wavelength of a ring resonator includes preparing a ring resonator which contains a ring waveguide and a dielectric layer covering the ring waveguide, and heating the ring resonator to induce a refractive index phase change of the dielectric layer.
Abstract:
Provided is a method of tuning a resonance wavelength of a ring resonator. The method of tuning the resonance wavelength of a ring resonator includes preparing a ring resonator which contains a ring waveguide and a dielectric layer covering the ring waveguide, and heating the ring resonator to induce a refractive index phase change of the dielectric layer.
Abstract:
Provided is an optical network structure. To configure an optical network structure between hundreds or more of cores in a CPU, intersection between waveguides does not occur, and thus, the optical network structure enables two-way communication between all the cores without an optical switch disposed in an intersection point. The present invention enables a single chip optical network using a silicon photonics optical element, and a CPU chip configured with hundreds or thousands of cores can be developed.
Abstract:
Methods of forming photo detectors are provided. The method includes providing a semiconductor layer on a substrate, forming a trench in the semiconductor layer, forming a first single crystalline layer and a second single crystalline layer using a selective single crystalline growth process in the trench, and patterning the first and second single crystalline layers and the semiconductor layer to form a first single crystalline pattern, a second single crystalline pattern and an optical waveguide.