Abstract:
A display device includes a first separation layer disposed in an emission area of a substrate, a second separation layer disposed on the first separation layer, an insulating layer disposed on the second layer, a first electrode disposed on the insulating layer, a light emitting structure disposed on the first electrode, and a second electrode disposed on the light emitting structure. The first electrode includes a first area on the second layer and a second area electrically separated from the first area.
Abstract:
A laser apparatus includes a laser generator configured to generate a first laser beam proceeding along a first direction, and an inversion module configured to convert the first laser beam to a second laser beam proceeding along the first direction, the inversion module including a splitter configured to form a reflected laser beam by partially reflecting the first laser beam, and a transmitted laser beam by partially transmitting the first laser beam, and a prism configured to reflect the reflected laser beam.
Abstract:
An organic light emitting diode display includes a substrate, a scan line on the substrate to transfer a scan signal, a data line on the substrate to transfer a data signal, a switching transistor connected with the scan line and the data line, a driving transistor connected with the switching transistor, and an organic light emitting diode electrically connected to the driving transistor. The driving transistor may include a first semiconductor layer, the switching transistor may include a second semiconductor layer, and the first semiconductor layer may have a surface roughness that is greater than that of the second semiconductor layer.
Abstract:
A method of manufacturing a polycrystalline silicon layer for a display device includes the steps of forming an amorphous silicon layer on a substrate, cleaning the amorphous silicon layer with hydrofluoric acid, rinsing the amorphous silicon layer with hydrogenated deionized water, and irradiating the amorphous silicon layer with a laser beam to form a polycrystalline silicon layer.
Abstract:
A display apparatus includes a base substrate, an active pattern on the base substrate including a source region, a drain region, and a channel region that is doped between the source region and the drain region, the channel region including polycrystalline silicon, and a gate electrode overlapping the channel region of the active pattern. The channel region may include a lower portion, an upper portion, and an intermediate portion between the upper portion and the lower portion, and a dopant density of the lower portion may be 80% or more of a dopant density of the upper portion.
Abstract:
A display device may include a substrate, a first layer on the substrate, the first layer including a first portion having a first thickness and a second portion having a second thickness greater than the first thickness, a second layer on the first layer, an active pattern on the second layer, the active pattern overlapping only the first portion of the first layer, a gate electrode on the active pattern, a source electrode and a drain electrode on the gate electrode and connected to the active pattern, a first electrode connected to one of the source electrode and the drain electrode, a pixel defining layer on the first electrode, the pixel defining layer having an opening portion exposing at least a portion of the first electrode, an emission layer in the opening portion on the first electrode, and a second electrode on the emission layer.
Abstract:
A thin film transistor array panel includes a plurality of pixels on a substrate. Each pixel of the plurality of pixels includes a driving and a switching thin film transistor. The driving thin film transistor includes a first semiconductor including first source and drain regions, a first gate electrode overlapping the first semiconductor, a gate insulating layer between the first semiconductor and the first gate electrode, an oxide layer between the first semiconductor and the gate insulating layer, and first source and drain electrodes. The switching thin film transistor includes a second semiconductor including second source and drain regions, a second gate electrode overlapping the second semiconductor, and second source and drain electrodes. The switching thin film transistor includes the gate insulating layer between the second semiconductor and the second gate electrode. The gate insulating layer contacts an upper portion of the second semiconductor.
Abstract:
A method of manufacturing a stacked structure includes forming a first metal buffer layer including crystal grains on a base substrate, forming a second metal buffer material layer on the first metal buffer layer, and crystallizing the second metal buffer material layer to form a second metal buffer layer, wherein the second metal buffer material layer includes crystal grains, and a density of the crystal grains of the second metal buffer material layer is lower than a density of the crystal grains of the first metal buffer layer.
Abstract:
A laser apparatus includes a laser generator configured to generate a first laser beam proceeding along a first direction, and an inversion module configured to convert the first laser beam to a second laser beam proceeding along the first direction, the inversion module including a splitter configured to form a reflected laser beam by partially reflecting the first laser beam, and a transmitted laser beam by partially transmitting the first laser beam, and a prism configured to reflect the reflected laser beam.
Abstract:
A laser annealing device includes a stage, a laser generator, and a reflective member. The stage supports a substrate with a thin film formed thereon to be processed, and may be moved in a first direction at a set or predetermined speed. The laser generator irradiates a first area of the thin film with a laser beam while the stage is moved. The reflective member reflects a part of the laser beam, which is reflected from the first area of the thin film, to a second area of the thin film. The first area and the second area are spaced apart from each other.