Abstract:
An organic light emitting diode (OLED) display including: a substrate; an organic light emitting diode formed on the substrate; a metal oxide layer formed on the substrate and covering the organic light emitting diode; a first inorganic layer formed on the substrate and covering the organic light emitting diode; a second inorganic layer formed on the first inorganic layer and contacting the first inorganic layer at an edge of the second inorganic layer; an organic layer formed on the second inorganic layer and covering a relatively smaller area than the second inorganic layer; and a third inorganic layer formed on the organic layer, covering a relatively larger area than the organic layer, and contacting the first inorganic layer and the second inorganic layer at an edge of the third inorganic layer.
Abstract:
An organic light emitting diode (OLED) display including: a substrate; an organic light emitting diode formed on the substrate; a metal oxide layer formed on the substrate and covering the organic light emitting diode; a first inorganic layer formed on the substrate and covering the organic light emitting diode; a second inorganic layer formed on the first inorganic layer and contacting the first inorganic layer at an edge of the second inorganic layer; an organic layer formed on the second inorganic layer and covering a relatively smaller area than the second inorganic layer; and a third inorganic layer formed on the organic layer, covering a relatively larger area than the organic layer, and contacting the first inorganic layer and the second inorganic layer at an edge of the third inorganic layer.
Abstract:
A vapor deposition apparatus for providing a deposition film on a substrate, the vapor deposition apparatus includes a plurality of first nozzle parts which injects a first raw material toward the substrate; a plurality of second nozzle parts which is alternately disposed together with the plurality of first nozzle parts and injects a second raw material toward the substrate; a diffuser unit which distributes the second raw material to the plurality of second nozzle parts; and a supply unit which supplies the second raw material to the diffuser unit.
Abstract:
A vapor deposition apparatus for depositing a thin film on a substrate, by which a deposition process is efficiently performed and deposition film characteristics are easily improved, and a vapor deposition apparatus including: a stage onto which a substrate is disposed; and a supply unit disposed to face the substrate and having a main body member and a nozzle member disposed on one surface of the main body member facing the substrate, to sequentially supply a plurality of gases towards the substrate, and a method of manufacturing an organic light-emitting display apparatus using the same.
Abstract:
Disclosed are an organic light emitting diode display and a manufacturing method thereof, and, more particularly, an organic light emitting diode display which includes an encapsulation layer including an inorganic layer containing carbon at a level of about 0.2 wt % to about 6.2 wt % and an organic layer and a manufacturing method thereof.
Abstract:
Disclosed are an organic light emitting diode display and a manufacturing method thereof, and, more particularly, an organic light emitting diode display which includes an encapsulation layer including an inorganic layer containing carbon at a level of about 0.2 wt % to about 6.2 wt % and an organic layer and a manufacturing method thereof.
Abstract:
Disclosed herein is an organic light-emitting diode lighting apparatus. The organic light-emitting diode lighting apparatus may include a transparent substrate main body with a plurality of groove lines formed therein, auxiliary electrodes formed in at least of the plurality of groove lines, a first electrode formed on the substrate main body, positive temperature coefficients configured to connect the auxiliary electrodes and the first electrode, an organic emission layer formed on the first electrode, and/or a second electrode formed on the organic emission layer.
Abstract:
A vapor deposition apparatus for providing a deposition film on a substrate, the vapor deposition apparatus includes a plurality of first nozzle parts which injects a first raw material toward the substrate; a plurality of second nozzle parts which is alternately disposed together with the plurality of first nozzle parts and injects a second raw material toward the substrate; a diffuser unit which distributes the second raw material to the plurality of second nozzle parts; and a supply unit which supplies the second raw material to the diffuser unit.
Abstract:
A vapor deposition apparatus for depositing a thin film on a substrate, by which a deposition process is efficiently performed and deposition film characteristics are easily improved, and a vapor deposition apparatus including: a stage onto which a substrate is disposed; and a supply unit disposed to face the substrate and having a main body member and a nozzle member disposed on one surface of the main body member facing the substrate, to sequentially supply a plurality of gases towards the substrate, and a method of manufacturing an organic light-emitting display apparatus using the same.
Abstract:
A vapor deposition apparatus for forming a deposition layer on a substrate, the vapor deposition apparatus includes a supply unit configured to receive a first source gas, a reaction space connected to the supply unit, a plasma generator in the reaction space, a first injection unit configured to inject a deposition source material to the substrate, the deposition source material including the first source gas, and a filament unit in the reaction space, the filament unit being connected to a power source.