Abstract:
A thin film transistor (TFT) substrate, an organic light-emitting display apparatus including the TFT substrate, and a method of manufacturing the TFT substrate that enable simple manufacturing processes and a decrease in the interference between a capacitor and other interconnections are disclosed. The TFT substrate may include a substrate, a TFT arranged on the substrate, the TFT including an active layer, a gate electrode, a source electrode, and a drain electrode, a pixel electrode electrically connected to one of the source electrode and the drain electrode, and a capacitor including a lower capacitor electrode and an upper capacitor electrode, the lower capacitor electrode formed from the same material as the active layer and arranged on the same layer as the active layer, and the upper capacitor electrode formed from the same material as the pixel electrode.
Abstract:
An organic light emitting display includes pixels located at a region defined by scan lines and data lines, i blocks, each of the i blocks including two or more scan lines wherein i is a natural number that is 2 or greater, a control driver configured to supply a first control signal to i first control lines and a second control signal to i second control lines, each of the first and second control lines being in a corresponding one of the blocks, a scan driver configured to supply a scan signal to the scan lines and a data driver configured to supply a data signal to the data lines, wherein the scan driver is configured to supply the scan signals to the scan lines in different directions in adjacent ones of the blocks.
Abstract:
A thin film transistor (TFT) substrate, an organic light-emitting display apparatus including the TFT substrate, and a method of manufacturing the TFT substrate that enable simple manufacturing processes and a decrease in the interference between a capacitor and other interconnections are disclosed. The TFT substrate may include a substrate, a TFT arranged on the substrate, the TFT including an active layer, a gate electrode, a source electrode, and a drain electrode, a pixel electrode electrically connected to one of the source electrode and the drain electrode, and a capacitor including a lower capacitor electrode and an upper capacitor electrode, the lower capacitor electrode formed from the same material as the active layer and arranged on the same layer as the active layer, and the upper capacitor electrode formed from the same material as the pixel electrode.
Abstract:
A pixel includes an organic light emitting diode (OLED), a first transistor, a first capacitor, a second capacitor, and a pixel circuit. The OLED includes a cathode electrode connected to a second power source. The first transistor is connected between a data line and a first node, and turns on when a scan signal is supplied to a scan line. The first capacitor is connected between the first node and a third power source. The second capacitor is connected between the first node and a fourth power source. The pixel circuit controls a current quantity flowing from a first power source to the second power source through the OLED based on a voltage of the first node.
Abstract:
A thin film transistor (TFT) array substrate is provided that includes a TFT on a substrate. The TFT can include an active layer, gate electrode, source electrode, drain electrode, first insulating layer between the active layer and the gate electrode, and second insulating layer between the gate electrode and the source and drain electrodes. A pixel electrode is disposed on the first and second insulating layers. A capacitor including a lower electrode is disposed on a same layer as the gate electrode and an upper electrode. A third insulating layer directly between the second insulating layer and the pixel electrode and between the lower electrode and the upper electrode. A fourth insulating layer covers the source electrode, the drain electrode, and the upper electrode, and exposes the pixel electrode and can further expose a pad electrode.