Abstract:
A thin film transistor includes a substrate, an oxide semiconductor layer that is disposed on the substrate, a gate electrode that overlaps with the oxide semiconductor layer, a gate insulating layer that is disposed between the oxide semiconductor layer and the gate electrode, and a source electrode and a drain electrode that at least partially overlap with the oxide semiconductor layer and are spaced from each other. The gate insulating layer includes an oxide including a first material. The oxide semiconductor layer includes an oxide which includes a same material as the first material and a second material, and the source electrode and the drain electrode include an oxide that includes a same material as the second material and a third material, and a grain boundary is not formed on an interface between at least one of the gate insulating layer and the oxide semiconductor layer or between the oxide semiconductor layer, and the source electrode and the drain electrode.
Abstract:
A thin film transistor array panel includes: a substrate; a gate line and a common voltage line on the substrate and electrically separated from each other; a gate insulating layer on the gate line and the common voltage line; a first passivation layer on the gate insulating layer; a common electrode on the first passivation layer; a second passivation layer on the common electrode; and a pixel electrode and a connecting member on the second passivation layer and electrically separated from each other. A first contact hole and a second contact hole are defined in the first and second passivation layers. The pixel electrode and the drain electrode are connected to each other through the second contact hole. The connecting member and the common electrode are connected to each other through the first contact hole.
Abstract:
A thin film transistor is provided. A thin film transistor according to an exemplary embodiment of the present invention includes: a substrate; a gate line disposed on the substrate and including a gate electrode; a semiconductor layer disposed on the substrate and including at least a portion overlapping the gate electrode; a gate insulating layer disposed between the gate line and the semiconductor layer; and a source electrode and a drain electrode disposed on the substrate and facing each other over a channel region of the semiconductor layer. The gate insulating layer includes a first region and a second region, the first region corresponds to the channel region of the semiconductor layer, the first region is made of a first material, the second region is made of a second material, and the first material and the second material have different atomic number ratios of carbon and silicon.
Abstract:
A thin film transistor includes a substrate, an oxide semiconductor layer that is disposed on the substrate, a gate electrode that overlaps with the oxide semiconductor layer, a gate insulating layer that is disposed between the oxide semiconductor layer and the gate electrode, and a source electrode and a drain electrode that at least partially overlap with the oxide semiconductor layer and are spaced from each other. The gate insulating layer includes an oxide including a first material. The oxide semiconductor layer includes an oxide which includes a same material as the first material and a second material, and the source electrode and the drain electrode include an oxide that includes a same material as the second material and a third material, and a grain boundary is not formed on an interface between at least one of the gate insulating layer and the oxide semiconductor layer or between the oxide semiconductor layer, and the source electrode and the drain electrode.
Abstract:
A display device includes a first insulating substrate including a display area, a peripheral area and a test area, a gate conductor including a test element group gate electrode, a gate electrode and a gate line on the first insulating substrate, a gate insulating layer on the gate conductor, a semiconductor layer including a test element group semiconductor layer and a pixel semiconductor layer on the gate insulating layer, a data conductor including a test element group source electrode, a test element group drain electrode, a data line including a source electrode, and a drain electrode on the semiconductor layer, a first passivation layer on the data conductor, a test element group common electrode and a pixel common electrode on the first passivation layer, a second passivation layer on the test element group common electrode and the pixel common electrode, and a pixel electrode on the second passivation layer.
Abstract:
A thin film transistor includes a substrate, an oxide semiconductor layer that is disposed on the substrate, a gate electrode that overlaps with the oxide semiconductor layer, a gate insulating layer that is disposed between the oxide semiconductor layer and the gate electrode, and a source electrode and a drain electrode that at least partially overlap with the oxide semiconductor layer and are spaced from each other. The gate insulating layer includes an oxide including a first material. The oxide semiconductor layer includes an oxide which includes a same material as the first material and a second material, and the source electrode and the drain electrode include an oxide that includes a same material as the second material and a third material, and a grain boundary is not formed on an interface between at least one of the gate insulating layer and the oxide semiconductor layer or between the oxide semiconductor layer, and the source electrode and the drain electrode.
Abstract:
A thin film transistor includes a substrate, an oxide semiconductor layer that is disposed on the substrate, a gate electrode that overlaps with the oxide semiconductor layer, a gate insulating layer that is disposed between the oxide semiconductor layer and the gate electrode, and a source electrode and a drain electrode that at least partially overlap with the oxide semiconductor layer and are spaced from each other. The gate insulating layer includes an oxide including a first material. The oxide semiconductor layer includes an oxide which includes a same material as the first material and a second material, and the source electrode and the drain electrode include an oxide that includes a same material as the second material and a third material, and a grain boundary is not formed on an interface between at least one of the gate insulating layer and the oxide semiconductor layer or between the oxide semiconductor layer, and the source electrode and the drain electrode.