Abstract:
A display device may include a switching device, a gate line, a data line, a pixel electrode, and an auxiliary line. The switching device includes a first electrode, a second electrode, and a third electrode. The gate line is electrically connected to the first electrode. The data line crosses the gate line in a plan view of the display device and is electrically connected to the second electrode. The pixel electrode is electrically connected to the third electrode. The auxiliary line is electrically connected through the first gate line to the first electrode and crosses the gate line in the plan view of the display device.
Abstract:
A display apparatus includes a first substrate including a channel-forming area, a second substrate facing the first substrate, a thin-film transistor disposed on the first substrate, a pixel electrode electrically connected to the thin-film transistor, a gate line disposed on the first substrate and electrically connected to the thin-film transistor, a data line electrically connected to the thin-film transistor and divided into at least two portions such that the channel-forming area is disposed between the two portions of the data line, and a connection portion electrically connecting the two portions of the data line to each other, in which the thin-film transistor includes a gate electrode branched from the gate line and overlapping the channel-forming area, a semiconductor pattern overlapping the gate electrode and contacting the two portions of the data line so that the channel-forming area is disposed in the semiconductor pattern, and a drain electrode electrically connected to the pixel electrode and overlapping the semiconductor pattern.
Abstract:
A thin film transistor is provided as follows. A first gate electrode and a second gate electrode are stacked on each other. A semiconductor layer is interposed between the first and second gate electrodes. A source electrode and a drain electrode are interposed between the semiconductor layer and the second gate electrode. A connection electrode connects electrically the first gate electrode and the second gate electrode. A first insulating film is interposed between the first gate electrode and the semiconductor layer. A second insulating film includes a first part interposed between the semiconductor layer and the second gate electrode and a second part interposed between the second gate electrode and the drain electrode. A third insulating film includes a first part interposed between the connection electrode and the second gate electrode.
Abstract:
A liquid crystal display includes: a gate line including a gate electrode; a data line including a source electrode; a drain electrode; an organic layer on the gate and data lines and the drain electrode, and a first opening defined therein; a first electrode on the organic layer, and a second opening defined therein; and a passivation layer on the first electrode, and a contact hole defined therein exposing the drain electrode. An interval taken in a first direction between a first edge of the gate electrode, the first edge parallel to a second direction in which the gate line is extended and which is different than the first direction, and a second edge of the first electrode second opening, the second edge parallel to the second direction and adjacent to the gate electrode first edge is 0 micrometer to about 6 micrometers.
Abstract:
A liquid crystal display includes: a gate line including a gate electrode; a data line including a source electrode; a drain electrode; an organic layer on the gate and data lines and the drain electrode, and a first opening defined therein; a first electrode on the organic layer, and a second opening defined therein; and a passivation layer on the first electrode, and a contact hole defined therein exposing the drain electrode. An interval taken in a first direction between a first edge of the gate electrode, the first edge parallel to a second direction in which the gate line is extended and which is different than the first direction, and a second edge of the first electrode second opening, the second edge parallel to the second direction and adjacent to the gate electrode first edge is 0 micrometer to about 6 micrometers.
Abstract:
A thin film transistor is provided as follows. A first gate electrode and a second gate electrode are stacked on each other. A semiconductor layer is interposed between the first and second gate electrodes. A source electrode and a drain electrode are interposed between the semiconductor layer and the second gate electrode. A connection electrode connects electrically the first gate electrode and the second gate electrode. A first insulating film is interposed between the first gate electrode and the semiconductor layer. A second insulating film includes a first part interposed between the semiconductor layer and the second gate electrode and a second part interposed between the second gate electrode and the drain electrode. A third insulating film includes a first part interposed between the connection electrode and the second gate electrode.
Abstract:
A thin film transistor substrate a display area that includes pixels connected to gate lines and data lines crossing the gate lines, a non-display area disposed adjacent to the display area, data pads disposed in the non-display area and each being connected to a first end of a corresponding data line of the data lines, first transistors disposed in the non-display area and each being connected to a second end of the corresponding data line of the data lines, OS pads connected to the second end of the data lines, and repair lines disposed in the non-display area along a vicinity of the display area and arranged while interposing the first transistors therebetween. The OS pads are overlapped with the first transistors and the repair lines.