Abstract:
There are provided a multilayer ceramic electronic component and a board for mounting the same. The multilayer ceramic electronic component includes a hexahedral ceramic body including dielectric layers and satisfying T/W>1.0 when a width thereof is defined as W and a thickness thereof is defined as T; an active layer in which capacitance is formed, by including a plurality of first and second internal electrodes alternately exposed through both end surfaces of the ceramic body, having the dielectric layer interposed therebetween, an upper cover layer formed above the active layer; a lower cover layer formed below the active layer and having a greater thickness than the upper cover layer; and first and second external electrodes covering the end surfaces of the ceramic body, wherein when a thickness of the lower cover layer is defined as Tb, 0.03≦Tb/T≦0.25 is satisfied.
Abstract:
A multilayer ceramic electronic component includes a ceramic main body including dielectric layers and satisfying T/W>1.0 when W and T are width and thickness, respectively; and first and second internal electrodes stacked in the ceramic main body and facing each other with the dielectric layer interposed therebetween, the ceramic main body including an active layer corresponding to a capacitance forming portion contributing to capacitance formation and a cover layer corresponding to a non-capacitance forming portion provided on at least one of uppermost and lowermost surfaces of the active layer, and when the active layer is divided into three regions in a direction in which the first and second internal electrodes are stacked, an average width of internal electrodes in a central region of the three regions is Wa, and an average width of internal electrodes in upper and lower regions of the three regions is Wb, 0.920≦Wb/Wa≦0.998 is satisfied.
Abstract:
There is provided a multilayer ceramic electronic component, including: a ceramic sintered body having a plurality of dielectric layers laminated therein; first and second capacitance portions being formed on surfaces of the dielectric layers; first and second lead-out portions being respectively extended from both sides of the first and second capacitance portions to be respectively exposed through both side surfaces of the ceramic sintered body and spaced apart from each other; sealing parts enclosing both end portions and corner portions of the ceramic sintered body; and first and second external electrodes enclosing the sealing parts and formed on both end portions of the ceramic sintered body to be electrically connected to the first and second lead-out portions, respectively.
Abstract:
A multilayer ceramic electronic component includes: a ceramic body including a recess portion formed in a length direction of at least one main surface thereof so as to be inwardly concave and satisfying T (thickness)/W (width)>1.0; first and second internal electrodes disposed to face each other in the ceramic body; and first and second external electrodes extended from the end surfaces of the ceramic body to the at least one main surface, wherein when the ceramic body is divided into an upper region At, corresponding to 70% to 90% of an overall thickness of the ceramic body, and a lower region Ab, corresponding to 10% to 30% of the overall thickness of the ceramic body, a ratio of an average particle size of Ab materials to an average particle size of At materials is less than 0.5.
Abstract:
A multilayered ceramic electronic component includes: a ceramic element having a plurality of dielectric layers laminated therein; first inner electrodes formed on the dielectric layers disposed in upper and lower portions in the ceramic element, the width of a portion of each of the first inner electrodes exposed from one end face of the ceramic element being less than that of a portion thereof disposed within the ceramic element; and second inner electrodes formed on the dielectric layers disposed in the middle portion in the ceramic element, the width of a portion of each of the second inner electrodes exposed from one end face of the ceramic element being equal to that of a portion thereof disposed within the ceramic element.
Abstract:
There is provided a multilayer ceramic capacitor including: a ceramic body including dielectric layers and satisfying T/W>1.1 when a width thereof is defined as W and a thickness thereof is defined as T; first internal electrodes each having a first lead part exposed to at least one side surface of the ceramic body; second internal electrodes each having a second lead part exposed to the at least one side surface of the ceramic body; first and second external electrodes electrically connected to the first lead part and the second lead part, respectively, and extended from the side surface of the ceramic body to which the first lead part and the second lead part are exposed to at least one of the first and second main surfaces; and an insulating layer formed to cover the first and second external electrodes formed on the first and second side surfaces.
Abstract:
There are provided a multilayer ceramic electronic component and a mounting board therefor, the multilayer ceramic electronic component including a ceramic body having a hexahedral shape, including dielectric layers, and satisfying T/W>1.0 when a length of the ceramic body is defined as L, a width of a lower surface of the ceramic body is defined as W, and a thickness of the ceramic body is defined as T, and first and second internal electrodes stacked in the ceramic body so as to face each other, having the respective dielectric layers interposed therebetween, wherein when a width of an upper surface of the ceramic body is defined as Wa, 0.800≦Wa/W≦0.985 is satisfied.
Abstract:
There is provided a multilayer ceramic electronic component, including: a ceramic body having first and second main surfaces, first and second side surfaces, and first and second end surfaces; a first block including first and second internal electrodes having overlap regions which form a capacitance part; one or more second blocks each including third and fourth internal electrodes having overlap regions which form a capacitance part; a first external electrode connected to the first and third lead out portions and a second external electrode connected to the second and fourth lead out portions; and an insulating layer formed on the first side surface of the ceramic body, wherein the second blocks are disposed on upper and lower parts of the first block.
Abstract:
There is provided a multilayer ceramic electronic component, including a ceramic body including dielectric layers, and having first and second main surfaces, first and second side surfaces and first and second end surfaces; first and second internal electrodes having overlap regions forming a capacitance part, the first internal electrodes having a first lead out portion to be exposed to the first side surface, and being alternately laminated with the second internal electrodes while being insulated therefrom, the second internal electrodes having a second lead out portion; first and second external electrodes connected to the first and second lead out portions, respectively; and an insulating layer formed on the first side surface, wherein a length of the first lead out portion is longer than that of the second lead out portion and the capacitance part has different distances from the first side surface.
Abstract:
Multilayer ceramic electronic component includes: a ceramic body including dielectric layers and having first and second main surfaces, first and second side surfaces, and first and second end surfaces; a first internal electrode including a capacitance forming portion having an overlap region for forming capacitance and a first lead-out portion extended from the capacitance forming portion to be exposed to the first side surface; a second internal electrode alternately stacked with the first internal electrode, having the dielectric layer interposed therebetween, insulated from the first internal electrode, and having a second lead-out portion extended from the capacitance forming portion to be exposed to the first side surface; first and second external electrodes connected to the first and second lead-out portions, respectively; an insulation layer.