Abstract:
There are provided a multilayer ceramic electronic component and a board for mounting the same. The multilayer ceramic electronic component includes a hexahedral ceramic body including dielectric layers and satisfying T/W>1.0 when a width thereof is defined as W and a thickness thereof is defined as T; an active layer in which capacitance is formed, by including a plurality of first and second internal electrodes alternately exposed through both end surfaces of the ceramic body, having the dielectric layer interposed therebetween, an upper cover layer formed above the active layer; a lower cover layer formed below the active layer and having a greater thickness than the upper cover layer; and first and second external electrodes covering the end surfaces of the ceramic body, wherein when a thickness of the lower cover layer is defined as Tb, 0.03≦Tb/T≦0.25 is satisfied.
Abstract:
A multilayer electronic component has a structure in which an internal electrode connected to a positive (+) terminal of a circuit and an internal electrode connected to a ground of the circuit are implemented together on one dielectric layer and external electrodes commonly use a multi-terminal connected to the ground of the circuit.
Abstract:
A resistor element includes a base substrate, a resistor layer disposed on one surface of the base substrate, a first electrode layer and a second electrode layer disposed on the resistor layer spaced apart from each other, a third electrode layer disposed between the first electrode layer and the second electrode layer to be spaced apart from the first electrode layer and the second electrode layer and being thicker than each of the first electrode layer and the second electrode layer, and first to third plating layers disposed on the first to third electrode layers, respectively.
Abstract:
A resistor element includes a base substrate, a resistor layer disposed on one surface of the base substrate, a first electrode layer and a second electrode layer disposed on the resistor layer to be spaced apart from each other, a third electrode layer disposed between the first electrode layer and the second electrode layer to be spaced apart from the first electrode layer and the second electrode layer, a conductive resin electrode disposed on at least one end of the third electrode layer, and first to third plating layers disposed on the first to third electrode layers, respectively.
Abstract:
An electronic component includes: a multilayer capacitor including a capacitor body and a pair of external electrodes, respectively disposed on external surfaces of the capacitor body in a first direction; and an interposer disposed below the multilayer capacitor and including an interposer body, a pair of via holes penetrating through the interposer body, and a pair of via electrodes, respectively disposed in the via holes to be connected to the pair of external electrodes, respectively. 0.24T≤t≤0.3T, where “T” is a maximum height of the multilayer capacitor and “t” is a maximum height of the interposer.
Abstract:
A resistor includes: a base substrate; a resistance layer disposed on one surface of the base substrate; first and second electrode layers disposed to be spaced apart from each other and covering portions of the resistance layer; and a third electrode layer disposed between the first and second electrode layers to be spaced apart from the first and second electrode layers and covering a portion of the resistance layer.
Abstract:
There is provided a composite electronic component including a composite body having a capacitor and an inductor coupled to each other, the capacitor including a ceramic body in which a plurality of dielectric layers and first and second internal electrodes facing each other with the dielectric layers interposed therebetween are stacked, and the inductor including a magnetic body including a coil part; a first input terminal; an output terminal; and a ground terminal.