Abstract:
A semiconductor device includes an insulating structure; a plurality of horizontal layers vertically stacked and spaced apart from each other in the insulating structure; a conductive material pattern contacting the insulating structure; and a vertical structure penetrating through the plurality of horizontal layers and extending into the conductive material pattern in the insulating structure. Each of the plurality of horizontal layers comprises a conductive material, the vertical structure comprises a vertical portion and a protruding portion, the vertical portion of the vertical structure penetrates through the plurality of horizontal layers, the protruding portion of the vertical structure extends from the vertical portion into the conductive material pattern, a width of the vertical portion is greater than a width of the protruding portion, and a side surface of the protruding portion is in contact with the conductive material pattern.
Abstract:
A semiconductor device includes an insulating structure; a plurality of horizontal layers vertically stacked and spaced apart from each other in the insulating structure; a conductive material pattern contacting the insulating structure; and a vertical structure penetrating through the plurality of horizontal layers and extending into the conductive material pattern in the insulating structure. Each of the plurality of horizontal layers comprises a conductive material, the vertical structure comprises a vertical portion and a protruding portion, the vertical portion of the vertical structure penetrates through the plurality of horizontal layers, the protruding portion of the vertical structure extends from the vertical portion into the conductive material pattern, a width of the vertical portion is greater than a width of the protruding portion, and a side surface of the protruding portion is in contact with the conductive material pattern.
Abstract:
A method of compensating an error of an input device and an apparatus thereof. An electromagnetic induction pen including a coil for electromagnetic induction spaced apart from a nib of the pen is prepared. A sensor board is provided in the apparatus in which a voltage or current for electromagnetic induction of the electromagnetic induction pen output. A disposition state of the sensor board is determined. The voltage or the current is adjusted and provided to the sensor board formed according to a sensed rotation state of the sensor board or terminal in order to compensate for an error generated due to a distance between the nib and the coil. An error is compensated for by allowing coordinates according to the electromagnetic induction formed on the sensor board and varied with the rotation disposition state of the sensor board to correspond to a position of the nib.
Abstract:
A semiconductor chip structure includes a first semiconductor chip that includes a first chip region and a first scribe lane region and a second semiconductor chip that includes a second chip region and a second scribe lane region respectively bonded to the first chip region and the first scribe lane region. The first semiconductor chip includes a first bonding wiring layer that includes a first bonding insulating layer and a first bonding electrode in the first bonding insulating layer. The second semiconductor chip includes a second bonding wiring layer that includes a second bonding insulating layer and a second bonding electrode in the second bonding insulating layer and a polishing stop pattern. The first bonding insulating layer and the first bonding electrode of the first bonding wiring layer are respectively hybrid bonded to the second bonding insulating layer and the second bonding electrode of the second bonding wiring layer.
Abstract:
A semiconductor device includes an insulating structure; a plurality of horizontal layers vertically stacked and spaced apart from each other in the insulating structure; a conductive material pattern contacting the insulating structure; and a vertical structure penetrating through the plurality of horizontal layers and extending into the conductive material pattern in the insulating structure. Each of the plurality of horizontal layers comprises a conductive material, the vertical structure comprises a vertical portion and a protruding portion, the vertical portion of the vertical structure penetrates through the plurality of horizontal layers, the protruding portion of the vertical structure extends from the vertical portion into the conductive material pattern, a width of the vertical portion is greater than a width of the protruding portion, and a side surface of the protruding portion is in contact with the conductive material pattern.
Abstract:
A semiconductor device includes an insulating structure; a plurality of horizontal layers vertically stacked and spaced apart from each other in the insulating structure; a conductive material pattern contacting the insulating structure; and a vertical structure penetrating through the plurality of horizontal layers and extending into the conductive material pattern in the insulating structure. Each of the plurality of horizontal layers comprises a conductive material, the vertical structure comprises a vertical portion and a protruding portion, the vertical portion of the vertical structure penetrates through the plurality of horizontal layers, the protruding portion of the vertical structure extends from the vertical portion into the conductive material pattern, a width of the vertical portion is greater than a width of the protruding portion, and a side surface of the protruding portion is in contact with the conductive material pattern.
Abstract:
A semiconductor device includes an insulating structure; a plurality of horizontal layers vertically stacked and spaced apart from each other in the insulating structure; a conductive material pattern contacting the insulating structure; and a vertical structure penetrating through the plurality of horizontal layers and extending into the conductive material pattern in the insulating structure. Each of the plurality of horizontal layers comprises a conductive material, the vertical structure comprises a vertical portion and a protruding portion, the vertical portion of the vertical structure penetrates through the plurality of horizontal layers, the protruding portion of the vertical structure extends from the vertical portion into the conductive material pattern, a width of the vertical portion is greater than a width of the protruding portion, and a side surface of the protruding portion is in contact with the conductive material pattern.
Abstract:
A semiconductor chip structure includes a first semiconductor chip that includes a first chip region and a first scribe lane region and a second semiconductor chip that includes a second chip region and a second scribe lane region respectively bonded to the first chip region and the first scribe lane region. The first semiconductor chip includes a first bonding wiring layer that includes a first bonding insulating layer and a first bonding electrode in the first bonding insulating layer. The second semiconductor chip includes a second bonding wiring layer that includes a second bonding insulating layer and a second bonding electrode in the second bonding insulating layer and a polishing stop pattern. The first bonding insulating layer and the first bonding electrode of the first bonding wiring layer are respectively hybrid bonded to the second bonding insulating layer and the second bonding electrode of the second bonding wiring layer.
Abstract:
A device including a first structure and a second structure is provided. The device includes a substrate, a peripheral circuit and first junction pads on the substrate; a first insulating structure surrounding side surfaces of the first junction pads; second junction pads contacting the first junction pads; a second insulating structure on the first insulating structure; a passivation layer on the second insulating structure; an upper insulating structure between the passivation layer and the second insulating structure; a barrier capping layer between the upper insulating structure and the passivation layer; conductive patterns spaced apart from each other in the upper insulating structure; a first pattern structure between the upper insulating structure and the second insulating structure; a stack structure between the second insulating structure and the first pattern structure, and including gate layers; and a vertical structure passing through the stack structure and including a data storage structure and a channel layer.