Abstract:
Methods and apparatuses are provided for performing a cell search by a receiver in a communication system. A scrambling code is identified by correlating a common pilot channel with a first synchronization accumulation length based on a frame boundary and a code group. A multipath signal is sought by correlating the common pilot channel with a second synchronization accumulation length based on the frame boundary and the code group. A difference between, or a ratio of, a first maximum value of first correlation values acquired during identification of the scrambling code and a second maximum value of second correlation values acquired during searching for the multipath signal, is determined. It is determined whether a frequency offset exists by comparing the difference or the ratio with a predetermined threshold value. The frequency offset is estimated and the frequency offset is transmitted to a demodulator, when the frequency offset exists.
Abstract:
A communication device and a method of controlling the same. The communication device includes at least one receiver configured to connect to a first antenna for receiving a first signal and a second antenna for receiving a second signal; and a processor electrically coupled to the at least one receiver, wherein the processor is configured to measure received signal strengths of the first signal and the second signal based on calibration operation for the first antenna and the second antenna, select one of the first antenna and the second antenna based on the measured received signal strengths, and control the at least one receiver to receive a signal through the selected one of the first antenna and the second antenna.
Abstract:
Methods and apparatuses are provided for reducing power consumption by early decoding. It is determined whether a predetermined decoding condition is satisfied upon expiration of a time unit in a transmission time interval. Decoding is performed on a signal that has been received through the time unit in the transmission time interval, when the predetermined decoding condition is satisfied. A controller outputs an instruction signal to a RF processor to set to a low-power mode during a remaining time period of the transmission time interval after the time unit in the transmission time interval, when the decoding is successful. Decoding is performed on the signal that has been received through the RF processor upon expiration of a last time unit of the transmission time interval regardless of the predetermined decoding condition, when the time unit is the last time unit in the transmission time interval.
Abstract:
The present disclosure relates to a method and an electronic device for processing data on the basis of a Bluetooth Low Energy (BLE) protocol. The electronic device includes a Bluetooth control module and a processor. The Bluetooth control module stores a modified BLE protocol stack including at least two Attribute Protocols (ATTs) for use with an application, the modified BLE protocol stack includes a first path and a second path. The first path includes a first ATT protocol to process an ATT command of the application, and the second path includes a second ATT protocol to process an ATT command of the application. The processor is coupled to the Bluetooth control module. The processor processes data of the application including the ATT command, using the modified BLE protocol stack including the at least two ATTs of the Bluetooth control module.
Abstract:
A method of iterative detection and decoding by a receiver and a receiver for iterative detection and decoding. The method includes generating a channel estimated value using a received signal; storing the generated channel estimated value; generating a Log Likelihood Ratio (LLR) value using the received signal and the stored channel estimated value; and generating a decoded bit as feedback information using the LLR value, wherein the LLR value is iteratively regenerated using the generated feedback information, the stored channel estimated value, and the received signal.
Abstract:
A method of iterative detection and decoding by a receiver and a receiver for iterative detection and decoding. The method includes generating a channel estimated value using a received signal; storing the generated channel estimated value; generating a Log Likelihood Ratio (LLR) value using the received signal and the stored channel estimated value; and generating a decoded bit as feedback information using the LLR value, wherein the LLR value is iteratively regenerated using the generated feedback information, the stored channel estimated value, and the received signal.
Abstract:
Methods and apparatuses are provided for controlling a communication device. A first subframe is received from a serving cell and a plurality of subframes is received from a plurality of neighbor cells. A respective time difference of arrival (TDOA) is measured for each of the plurality of subframes based on a time of arrival (TOA) of the first subframe. At least one of the measured TDOAs is transmitted to a location server. The respective TDOAs are measured based on at least one of a cell-specific reference signal (CRS) and a synchronization signal in the plurality of subframes.
Abstract:
Disclosed is a terminal in a communication system including a transceiver, and at least one processor configured to generate modem control information, transmit, to a server, the modem control information through the transceiver, when the generated modem control information includes location information of the terminal, receive, from the server, the modem control information related to an estimated movement path of the terminal, the estimated movement path being determined based on the location information of the terminal, and perform a communication using the updated modem control information, wherein the updated modem control information includes at least one of cell identity information, signal strength per cell, frequency offset, timing offset, channel state information (CSI), interference information, and downlink configuration information.
Abstract:
A method and apparatus for controlling a modem of a user equipment (UE) in a wireless communication system is provided. The method includes generating at least one modem control information determined based on information related to a wireless communication environment, when at least a portion of the wireless communication environment is changed, updating a priority stored in a database of the UE based on the changed wireless communication environment and controlling the modem of the UE using the priority-updated modem control information.
Abstract:
A method and apparatus for controlling a modem of a user equipment (UE) in a wireless communication system is provided. The method includes generating at least one modem control information determined based on information related to a wireless communication environment, when at least a portion of the wireless communication environment is changed, updating a priority stored in a database of the UE based on the changed wireless communication environment and controlling the modem of the UE using the priority-updated modem control information.