Abstract:
A host for controlling a non-volatile memory card, a system including the same, and methods of operating the host and the system are provided. The method of operating the host connected with the non-volatile memory card through a clock bus, a command bus, and one or more data buses includes transmitting a first command to the non-volatile memory card through the command bus, transmitting first data corresponding to the first command to the non-volatile memory card through the one or more data buses or receiving the first data from the non-volatile memory card through the data buses, and transmitting a second command to the non-volatile memory card at least once through the command bus during or before transfer of the first data.
Abstract:
A system on chip (SoC) includes an internal read-only memory (ROM) configured to store a first boot loader; a first internal static random access memory (SRAM) configured to receive a second boot loader output from a booting device, store the second boot loader, and perform a booting sequence according to control of the first boot loader; a second internal SRAM configured to receive a third boot loader output from the booting device, store the third boot loader, and perform a wake-up sequence according to control of the first boot loader; and a dynamic random access memory (DRAM) controller configured to load an operating system (OS) from the booting device into a DRAM according to control of the second boot loader.
Abstract:
A host for controlling a non-volatile memory card, a system including the same, and methods of operating the host and the system are provided. The method of operating the host connected with the non-volatile memory card through a clock bus, a command bus, and one or more data buses includes transmitting a first command to the non-volatile memory card through the command bus, transmitting first data corresponding to the first command to the non-volatile memory card through the one or more data buses or receiving the first data from the non-volatile memory card through the data buses, and transmitting a second command to the non-volatile memory card at least once through the command bus during or before transfer of the first data.
Abstract:
A semiconductor system comprises a nonvolatile memory storing a patch code, the patch code comprising a unique identifier (ID). An internal read only memory (IROM) stores a boot code, the boot code comprising a patch code execution function for executing the patch code and a linked register (LR) address for specifying a storage location where the patch code is to be executed. A static random access memory (SRAM) stores a copy of the patch code at the storage location, the copy of the patch code including the unique ID. A processor executes the copy of the patch code from the storage location. The processor executes the copy of the patch code stored at the storage location in the SRAM according to the comparison result.
Abstract:
A host for controlling a non-volatile memory card, a system including the same, and methods of operating the host and the system are provided. The method of operating the host connected with the non-volatile memory card through a clock bus, a command bus, and one or more data buses includes transmitting a first command to the non-volatile memory card through the command bus, transmitting first data corresponding to the first command to the non-volatile memory card through the one or more data buses or receiving the first data from the non-volatile memory card through the data buses, and transmitting a second command to the non-volatile memory card at least once through the command bus during or before transfer of the first data.
Abstract:
A system on chip (SoC) includes an internal read-only memory (ROM) configured to store a first boot loader; a first internal static random access memory (SRAM) configured to receive a second boot loader output from a booting device, store the second boot loader, and perform a booting sequence according to control of the first boot loader; a second internal SRAM configured to receive a third boot loader output from the booting device, store the third boot loader, and perform a wake-up sequence according to control of the first boot loader; and a dynamic random access memory (DRAM) controller configured to load an operating system (OS) from the booting device into a DRAM according to control of the second boot loader.
Abstract:
A system on chip (SoC) includes an internal read-only memory (ROM) configured to store a first boot loader; a first internal static random access memory (SRAM) configured to receive a second boot loader output from a booting device, store the second boot loader, and perform a booting sequence according to control of the first boot loader; a second internal SRAM configured to receive a third boot loader output from the booting device, store the third boot loader, and perform a wake-up sequence according to control of the first boot loader; and a dynamic random access memory (DRAM) controller configured to load an operating system (OS) from the booting device into a DRAM according to control of the second boot loader.
Abstract:
A semiconductor system comprises a nonvolatile memory storing a patch code, the patch code comprising a unique identifier (ID). An internal read only memory (IROM) stores a boot code, the boot code comprising a patch code execution function for executing the patch code and a linked register (LR) address for specifying a storage location where the patch code is to be executed. A static random access memory (SRAM) stores a copy of the patch code at the storage location, the copy of the patch code including the unique ID. A processor executes the copy of the patch code from the storage location. The processor executes the copy of the patch code stored at the storage location in the SRAM according to the comparison result.
Abstract:
A system on chip (SoC) includes an internal read-only memory (ROM) configured to store a first boot loader; a first internal static random access memory (SRAM) configured to receive a second boot loader output from a booting device, store the second boot loader, and perform a booting sequence according to control of the first boot loader; a second internal SRAM configured to receive a third boot loader output from the booting device, store the third boot loader, and perform a wake-up sequence according to control of the first boot loader; and a dynamic random access memory (DRAM) controller configured to load an operating system (OS) from the booting device into a DRAM according to control of the second boot loader.