Abstract:
A semiconductor device may include a clock driver including a first gate line, a second gate line, a third gate line and a fourth gate line each extending in a first direction, the first gate line and the second gate line each configured to receive a clock signal, and the third gate line and the fourth gate line each configured to receive an inverted clock signal; a master latch circuit overlapping the first gate line and the third gate line such that the master latch circuit receive the clock signal from the first gate line and receive the inverted clock signal from the third gate line; and a slave latch circuit overlapping the second gate line and the fourth gate line such that the slave latch circuit receives the clock signal from the second gate line, and receives the inverted clock signal from the fourth gate line.
Abstract:
An integrated circuit including a first standard cell including, first transistors, the first transistors being first unfolded transistors, a first metal pin, a second metal pin, and a third metal pin on a first layer, the first metal pin and the second metal pin having a first minimum metal center-to-metal center pitch therebetween less than or equal to 80 nm, a fourth metal pin and a fifth metal pin at a second layer, the fourth metal pin and the fifth metal pin extending in a second direction, the second direction being perpendicular to the first direction, a first via between the first metal pin and the fourth metal pin, and a second via between the third metal pin and the fifth metal pin such that a first via center-to-via center space between the first via and the second via is greater than double the first minimum metal center-to-metal center pitch.
Abstract:
A method of manufacturing a semiconductor device includes configuring a layout pattern; and forming conductive lines corresponding to the layout pattern on a substrate, wherein configuring the layout pattern includes: arranging pre-conductive patterns and post-conductive patterns for a first logic cell, a second logic cell, and a third logic cell; rearranging the pre-conductive patterns and the post-conductive patterns so that two conductive patterns that are adjacent to a boundary between two adjacent logic cells from among the first logic cell, the second logic cell, and the third logic cell are formed by different photolithography processes; and arranging conductive patterns for a dummy cell arranged between the second logic cell and the third logic cell.
Abstract:
A method for managing data by an electronic device is provided. The method includes receiving first data inputted from a user, generating second data by encrypting the first data using a public key, generating a query comprising the second data, transmitting the query to a server, receiving third data corresponding to the query from the server, generating fourth data by decrypting the third data using a secret key corresponding to the public key, and outputting the fourth data.
Abstract:
A semiconductor device includes a substrate including a PMOSFET region and an NMOSFET region. First active patterns are on the PMOSFET region. Second active patterns are on the NMOSFET region. Gate electrodes intersect the first and second active patterns and extend in a first direction. First interconnection lines are disposed on the gate electrodes and extend in the first direction. The gate electrodes are arranged at a first pitch in a second direction intersecting the first direction. The first interconnection lines are arranged at a second pitch in the second direction. The second pitch is smaller than the first pitch.
Abstract:
A semiconductor device includes a substrate including a PMOSFET region and an NMOSFET region. First active patterns are on the PMOSFET region. Second active patterns are on the NMOSFET region. Gate electrodes intersect the first and second active patterns and extend in a first direction. First interconnection lines are disposed on the gate electrodes and extend in the first direction. The gate electrodes are arranged at a first pitch in a second direction intersecting the first direction. The first interconnection lines are arranged at a second pitch in the second direction. The second pitch is smaller than the first pitch.
Abstract:
An integrated circuit including a plurality of standard cells is provided. The integrated circuit includes a first standard cell group including at least two first standard cells, a second standard cell group adjacent to the first standard cell group in a first direction, the second standard cell group including at least one second standard cell, and a first insulating gate bordered by one side of at least one of the first standard cells and one side of the at least one second standard cell, wherein each of the first and second standard cells includes a p-type transistor (pFET) and an n-type transistor (nFET) which are integrated, wherein each of the first and second standard cells has first wiring lines of different designs, and wherein each of the first and second standard cells has the same or different placement of an active region according to the corresponding design.
Abstract:
According to example embodiments, a layout design system includes a processor, a storage module configured to store a standard cell design, and a generation module. The standard cell design includes an active area and a normal gate area on the active area. The generation module is configured to receive the standard cell design, to adjust a width of an active cut design crossing the active area of the standard cell design, and to output a chip design including a design element using the processor. The design element includes the active cut design having the width adjusted.
Abstract:
A semiconductor device may include a clock driver including a first gate line, a second gate line, a third gate line and a fourth gate line each extending in a first direction, the first gate line and the second gate line each configured to receive a clock signal, and the third gate line and the fourth gate line each configured to receive an inverted clock signal; a master latch circuit overlapping the first gate line and the third gate line such that the master latch circuit receive the clock signal from the first gate line and receive the inverted clock signal from the third gate line; and a slave latch circuit overlapping the second gate line and the fourth gate line such that the slave latch circuit receives the clock signal from the second gate line, and receives the inverted clock signal from the fourth gate line.
Abstract:
A method of manufacturing a semiconductor device includes configuring a layout pattern; and forming conductive lines corresponding to the layout pattern on a substrate, wherein configuring the layout pattern includes: arranging pre-conductive patterns and post-conductive patterns for a first logic cell, a second logic cell, and a third logic cell; rearranging the pre-conductive patterns and the post-conductive patterns so that two conductive patterns that are adjacent to a boundary between two adjacent logic cells from among the first logic cell, the second logic cell, and the third logic cell are formed by different photolithography processes; and arranging conductive patterns for a dummy cell arranged between the second logic cell and the third logic cell.