Abstract:
Resistance measuring structures for a stacked integrated circuit device are provided. The resistance measuring structures may include a first Complementary Field Effect Transistor (CFET) stack, a second CFET stack, and a conductive connection. The first CFET may include a first upper transistor that includes a first upper drain region and a first lower transistor that is between the substrate and the first upper transistor and includes a first lower drain region. The second CFET may include a second upper transistor that includes a second upper drain region and a second lower transistor that is between the substrate and the second upper transistor and includes a second lower drain region. The conductive connection may electrically connect the first upper drain region and the second upper drain region.
Abstract:
Resistance measuring structures for a stacked integrated circuit device are provided. The resistance measuring structures may include a first Complementary Field Effect Transistor (CFET) stack, a second CFET stack, and a conductive connection. The first CFET may include a first upper transistor that includes a first upper drain region and a first lower transistor that is between the substrate and the first upper transistor and includes a first lower drain region. The second CFET may include a second upper transistor that includes a second upper drain region and a second lower transistor that is between the substrate and the second upper transistor and includes a second lower drain region. The conductive connection may electrically connect the first upper drain region and the second upper drain region.
Abstract:
Nanosheet transistor devices are provided. A nanosheet transistor device includes a transistor stack that includes a lower nanosheet transistor having a first nanosheet width and a lower gate width. The transistor stack also includes an upper nanosheet transistor that is on the lower nanosheet transistor and that has a second nanosheet width and an upper gate width that are different from the first nanosheet width and the lower gate width, respectively. Related methods of forming a nanosheet transistor device are also provided.
Abstract:
A method for forming a pattern of a semiconductor device and a semiconductor device formed using the same are provided. The method includes forming a buffer layer on a substrate, forming a channel layer on the buffer layer, forming support patterns penetrating the channel layer, and forming channel fin patterns and a buffer pattern by patterning the channel layer and the buffer layer. The channel layer includes a material of which a lattice constant is different from that of the buffer layer, and each of the channel fin patterns has both sidewalls that are in contact with the support patterns and are opposite to each other.
Abstract:
Integrated circuit devices may include a lower transistor and an upper transistor stacked on a substrate, and the upper transistor may overlap the lower transistor. The upper transistor may include an upper gate structure, and the lower transistor may include a lower gate structure, and the upper gate structure and the lower gate structure may have different widths in a horizontal direction.
Abstract:
Nanosheet transistor devices are provided. A nanosheet transistor device includes a transistor stack that includes a lower nanosheet transistor having a first nanosheet width and a lower gate width. The transistor stack also includes an upper nanosheet transistor that is on the lower nanosheet transistor and that has a second nanosheet width and an upper gate width that are different from the first nanosheet width and the lower gate width, respectively. Related methods of forming a nanosheet transistor device are also provided.