Abstract:
An electronic apparatus is disclosed. The electronic apparatus according to various exemplary embodiments includes a transceiver, and a processor configured to convert a firmware file to update a firmware of the display apparatus into a video signal, convert a setting information file to change a setting of the display apparatus into an audio signal, and control the transceiver to transmit the converted video signal and the converted audio signal to a display apparatus.
Abstract:
A semiconductor device includes a fin-type active area, nanosheets, a gate, a source/drain region, and insulating spacers. The fin-type active area protrudes from a substrate in a first direction. The nanosheets are spaced from an upper surface of the fin-type active area and include channel regions. The gate is over the fin-type active area. The source/drain region is connected to the nanosheets. The insulating spacers are in the fin-type active area and between the nanosheets. Air spaces are between the insulating spacers and the source/drain region based on positions of the insulating spacers.
Abstract:
An integrated circuit device includes: a first fin active region extending in a first direction parallel to a top surface of a substrate; a second fin active region extending in the first direction and spaced apart from the first fin active region in a second direction different from the first direction; a gate line intersecting the first and second fin active regions; a first source/drain region on one side of the gate line in the first fin active region; and a second source/drain region on one side of the gate line in the second fin active region and facing the first source/drain region, wherein a cross-section of the first source/drain region perpendicular to the first direction has an asymmetric shape with respect to a center line of the first source/drain region in the second direction extending in a third direction perpendicular to the top surface of the substrate.
Abstract:
An integrated circuit device includes: a first fin active region extending in a first direction parallel to a top surface of a substrate; a second fin active region extending in the first direction and spaced apart from the first fin active region in a second direction different from the first direction; a gate line intersecting the first and second fin active regions; a first source/drain region on one side of the gate line in the first fin active region; and a second source/drain region on one side of the gate line in the second fin active region and facing the first source/drain region, wherein a cross-section of the first source/drain region perpendicular to the first direction has an asymmetric shape with respect to a center line of the first source/drain region in the second direction extending in a third direction perpendicular to the top surface of the substrate.
Abstract:
An integrated circuit (IC) device includes a first and a second fin-type active region protruding from a first region and a second region, respectively, of a substrate, a first and a second gate line, and a first and a second source/drain region. The first fin-type active region has a first top surface and a first recess has a first depth from the first top surface. The first source/drain region fills the first recess and has a first width. The second fin-type active region has a second top surface and a second recess has a second depth from the second top surface. The second depth is greater than the first depth. The second source/drain region fills the second recess and has a second width. The second width is greater than the first width.
Abstract:
A display apparatus includes a display that displays at least a first part of an image, a power supply that supplies power to the display apparatus and an input/output port that connects in parallel the power supply and another power supply of another display apparatus that displays at least a second part of the image.
Abstract:
An automatic detection method of an arrangement of a video wall including a plurality of monitors and a video wall system are provided. The method includes: calling, by a control computer, identification information of a first monitor of the plurality of monitors; sending, by the first monitor, a response signal to the control computer and sending, by a second monitor which does not correspond to the called identification information, a detecting signal including a received direction of the response signal to the control computer; and receiving, by the control computer, the detecting signal, and determining the arrangement of the plurality of monitors according to the received detecting signal.
Abstract:
A semiconductor device includes: a fin-type active region extending on a substrate in a first direction that is parallel to an upper surface of the substrate; and a source/drain region in a recess region extending into the fin-type active region, wherein the source/drain region includes: a first source/drain material layer; a second source/drain material layer on the first source/drain material layer; and a first dopant diffusion barrier layer on an interface between the first source/drain material layer and the second source/drain material layer.
Abstract:
A semiconductor device includes: a fin-type active region extending on a substrate in a first direction that is parallel to an upper surface of the substrate; and a source/drain region in a recess region extending into the fin-type active region, wherein the source/drain region includes: a first source/drain material layer; a second source/drain material layer on the first source/drain material layer; and a first dopant diffusion barrier layer on an interface between the first source/drain material layer and the second source/drain material layer.
Abstract:
An integrated circuit device includes a fin-type active region extending on a substrate in a first direction parallel to a top surface of the substrate; a gate structure extending on the fin-type active region and extending in a second direction parallel to the top surface of the substrate and different from the first direction; and source/drain regions in a recess region extending from one side of the gate structure into the fin-type active region, the source/drain regions including an upper semiconductor layer on an inner wall of the recess region, having a first impurity concentration, and including a gap; and a gap-fill semiconductor layer, which fills the gap and has a second impurity concentration that is greater than the first impurity concentration.