Abstract:
A memory device comprises: a memory cell array comprising first and second word lines located adjacent to each other, a first memory cell connected to the first word line, and a second memory cell connected to the second word line and located adjacent to the first memory cell; and a word line voltage supplying unit that transitions a word line voltage of the first word line from a first word line voltage to a second word line voltage, in response to a first control signal. A transition control unit generates the first control signal for controlling a pulse of the word line voltage of the first word line in a transition period from the first word line voltage to the second word line voltage in such a way that a transition waveform profile from the first word line voltage to the second word line voltage is different from a transition waveform profile from the second word line voltage to the first word line voltage.
Abstract:
A memory module may include m memory devices. Each of the m memory devices may be divided into n regions each region including a plurality of rows corresponding to row addresses, where m and n are integers equal to or greater than 2. An address detector included in each of the m memory devices, wherein for each of the address detectors, the address detector may be configured to count a number of accesses to a particular row address included in one region of each of the m memory devices during a predetermined time period, and be configured to output a detect signal when the number of the counted accesses reaches a reference value. Each of the max-count address generators may be configured to count a number of accesses for a set of row addresses different from the sets of row addresses for which the other max-count address generators count accesses.
Abstract:
A test method of the semiconductor memory device including a memory cell array and an anti-fuse array includes detecting failed cells included in the memory cell array; determining a fail address corresponding to the detected failed cells; storing the determined fail address in a first region of the memory cell array; and reading the fail address stored in the first region to program the read fail address in the anti-fuse array. According to the test method of a semiconductor memory device and the semiconductor memory system, since the test operation can be performed without an additional memory for storing an address, the semiconductor memory device and the test circuit can be embodied by a small area.
Abstract:
A bad page management system is provided to guarantee a yield of a volatile semiconductor memory device such as a DRAM. A bad page list exists in a DRAM. A page remapper in a memory controller performs a page remapping operation in parallel with a normal operation of a scheduling unit to perform a latency overhead hidden function. A chip size of the DRAM is reduced or minimized. A DRAM controller performs a latency overhead hidden function to control a DRAM.
Abstract:
A memory device comprises: a memory cell array comprising first and second word lines located adjacent to each other, a first memory cell connected to the first word line, and a second memory cell connected to the second word line and located adjacent to the first memory cell; and a word line voltage supplying unit that transitions a word line voltage of the first word line from a first word line voltage to a second word line voltage, in response to a first control signal. A transition control unit generates the first control signal for controlling a pulse of the word line voltage of the first word line in a transition period from the first word line voltage to the second word line voltage in such a way that a transition waveform profile from the first word line voltage to the second word line voltage is different from a transition waveform profile from the second word line voltage to the first word line voltage.