摘要:
Magnetoresistive elements according to this invention comprise magnetically soft material in close proximity to the magnetoresistive material, exemplarily a perovskite manganite. The combination results in magnetic field "amplification", with large resistance changes attainable at relatively low applied fields. The invention exemplarily is embodied in magnetic sensors, e.g., magnetoresistive read/write heads.
摘要:
An article that uses a magnetoresistive material comprising one or more CrO.sub.2 grains having an insulating material, advantageously Cr.sub.2 O.sub.3, along at least a portion of the grain boundary or boundaries, the magnetoresistive article advantageously exhibiting a magnetoresistance ratio greater than 12% at 5K and 20 kOe.
摘要翻译:一种使用包含一种或多种CrO 2晶粒的磁阻材料的制品,该CrO 2晶粒沿着晶界或边界的至少一部分具有绝缘材料,优选为Cr 2 O 3,磁阻制品在5K和20kOe时有利地显示出大于12%的磁阻比 。
摘要:
An optical device comprises a body of ferroelectric material exhibiting an effective electro-optic coefficient (reff) and an optical loss (&agr;), with the body being adapted for the propagation of optical radiation at a wavelength &lgr;o through it, and means for applying an electric field to the body in order to alter the refractive index therein, characterized in that the body is polycrystalline and has an average grain size such that reff is relatively high and &agr; is relatively low, both at &lgr;o. In a preferred embodiment the body has an average grain size that is less than about &lgr;o/10, preferably in the range of approximately 8-20 nm, which is especially well suited for devices operating at near infrared wavelengths in the range of about 1000-1600 nm. Illustratively, the ferroelectric body is a perovskite material such as barium titanate or lithium niobate.
摘要:
In a mesa geometry semiconductor laser, a patterned dielectric coating used to define the stripe geometry contact on the top the mesa and to provide significant waveguiding comprises a chalcogenide glass. Applications to intersubband (e.g., quantum cascade) lasers are specifically described.
摘要:
Waveguides according to this invention have a chalcogenide glass core that comprises Se and one or both of As and Ge, and further comprises one or more dopant elements selected from the elements that cause a change in optical energy gap Eg of the glass core. The amount of dopant is selected such that Eg is equal to or less than a 2-photon energy 2h&ngr;, where h is Planck's constant and &ngr;=c/&lgr;, where c is the speed of light in vacuum and &lgr; is an operating wavelength. The dopant elements furthermore are selected such that the chalcogenide glass core has a nonlinear refractive index n2 greater than 200n2 (SiO2), where n2 (SiO2) is the nonlinear index of silica at &lgr;. Typically, &lgr; is about 1.55 &mgr;m. Exemplary, the dopant elements are selected from Sb, Bi, Sn, Pb, In, Tl, Cu, Ag and S. Currently preferred dopants are Te, Sb, Tl, Cu and Ag. Waveguides according to the invention are advantageously used in all-optical switches, optical logic elements and other means for optical processing of optical pulses.