摘要:
A projection system, a spatial light modulator, and a method for forming a MEMS device is disclosed. The spatial light modulator can have two substrates bonded together with one of the substrates comprising a micromirror array. The two substrates can be bonded at the wafer level after depositing a getter material andlor solid or liquid lubricant on one or both of the wafers. The wafers can be bonded together hermetically if desired, and the pressure between the two substrates can be below atmosphere.
摘要:
A projection system, a spatial light modulator, and a method for forming a MEMS device is disclosed. The spatial light modulator can have two substrates bonded together with one of the substrates comprising a micromirror array. The two substrates can be bonded at the wafer level after depositing a getter material and/or solid or liquid lubricant on one or both of the wafers. The wafers can be bonded together hermetically if desired, and the pressure between the two substrates can be below atmosphere.
摘要:
A projection system, a spatial light modulator, and a method for forming a MEMS device is disclosed. The spatial light modulator can have two substrates bonded together with one of the substrates comprising a micromirror array. The two substrates can be bonded at the wafer level after depositing a getter material andlor solid or liquid lubricant on one or both of the wafers. The wafers can be bonded together hermetically if desired, and the pressure between the two substrates can be below atmosphere.
摘要:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
摘要:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
摘要:
A simulation module simulates events that may occur during a cautionary period based on, e.g., current relative position of vehicles, vehicle and driver attributes and current game statistics for vehicles, and compiles new statistics and attributes that are used in the resumed race. A full race simulation option and a partial race simulation option are also provided. For example, in a season mode, the simulation module simulates events that may occur during a race and compiles statistics that can be used later, e.g., in a later race, for season standings, etc. A complete race may be simulated, or a partial race may be simulated, for example, if a user desires to terminate a race before it is finished, using the compiled statistics, and a new set of statistics compiled to track the simulated race events. Real world statistics are imported and used in some aspects. For example, real world standings, performance statistics and attribute information are stored in a database and are used as a basis for AI-controlled vehicle performance and AI-generated simulation results.
摘要:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
摘要:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
摘要:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
摘要:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.