摘要:
A visual information processing device having a neural network function and capable of visual information processing comprises a semiconductor integrated circuit device section equipped with a plurality of neuronic circuit regions realizing a neuron function included in the neural network function, and first and second molecular film sections provided on the integrated circuit device section. The first molecular film section comprises a light-receiving molecular film section including Tij input elements having a photoelectric function and to which coupling strength levels (Tij) between the plurality of neuronic circuit regions are optically written to realize electric connection between the neuronic circuit regions and image input elements for sensing visual images, each neuronic circuit region corresponding to one pixel. The second molecular film section comprises a light-emitting molecular film section including Tij signal output elements having a light-emitting function to output Tij matrix signals as matrix light emission patterns.
摘要:
A visual information processing device having a neural network function and capable of visual information processing comprises a semiconductor integrated circuit section equipped with a plurality of neuronic circuit regions realizing a neuron function included in the neural network function, and first and second molecular film sections provided on the integrated circuit section. The first molecular film section comprises a light-receiving molecular film section including Tij input elements having a photoelectric function and to which coupling strength levels (Tij) between the plurality of neuronic circuit regions are optically written to realize electric connection between the neuronic circuit regions and image input elements for sensing visual images, each neuronic circuit region corresponding to one pixel. The second molecular film section comprises a light-emitting molecular film section including Tij signal output elements having a light emitting function to output Tij matrix signals as matrix light emission patterns.
摘要:
An organic electric-field switching device has transparent or semitransparent upper electrodes and second insulating film so as to bias an electric field on a hetero-junction membrane formed on a lower electrode, in which the doping speed of a carrier is fast, and the switching device can be operated as the solid-state device and can be easily formed on a semiconductor made of silicon and the like. Therefore, the degree of integration of the device can be rapidly increased due to its multilayered structure.
摘要:
A plastic functional element comprising a lower electrode and a transparent upper electrode provided perpendicular to the contact surface between a first oxidation reduction material membrane and a second oxidation reduction material membrane, the oxidation reduction potentials of which being different each other, wherein, based on the difference in oxidation reduction potentials between the oxidation reduction material membranes, by irradiating light to the contact surface or applying a voltage between the electrodes, the condition of electron in the oxidation reduction material is controlled, so as to store information of incident light or applied voltage, and an operational function responding to an input voltage is given, thereby the minimization in size is possible to realize a high density and high speed operation.
摘要:
An example of the present invention is provided with porous sheets 11, 21 each formed by layering a porous base material including a polyolefin and a heat-resistant porous layer including a heat-resistant resin. The porous sheets 11, 21, respectively, are connected at connecting regions 15a and 15b, 25a and 25b, respectively, which have been formed by thermal fusion of the heat-resistant porous layers facing each other by folding the sheets. Furthermore, the porous sheets 11, 21 are additionally connected at a connecting region 27 that has been formed by thermal fusion.
摘要:
The present invention provides a separator for a non-aqueous electrolyte battery that includes a porous base material including a polyolefin and a heat-resistant porous layer provided on at least one surface of the porous base material and including a heat-resistant resin, in which when a thermomechanical analysis measurement has been performed by applying a constant load, the separator for a non-aqueous electrolyte battery satisfies the following conditions (i) and (ii): (i) at least one shrinkage peak appears in a temperature range of from 130 to 155° C. in a displacement waveform representing shrinkage displacement with respect to temperature; and (ii) an extension rate in a range from a shrinkage peak appearance temperature T1 to (T1+20)° C. is less than 0.5%/° C.
摘要:
An object of the invention is to provide a separator for a nonaqueous secondary battery, which has good adhesion to electrodes and is also capable of ensuring sufficient ion permeability even after attachment to electrodes. The separator for a nonaqueous secondary battery of the invention includes a porous substrate and an adhesive porous layer that is formed on at least one side of the porous substrate and contains a polyvinylidene-fluoride-based resin. The separator for a nonaqueous secondary battery is characterized in that the adhesive porous layer has a crystal size of 1 to 13 nm.
摘要:
An object of the invention is to provide a separator for a nonaqueous secondary battery, which has good adhesion to electrodes and is also capable of ensuring sufficient ion permeability even after attachment to an electrode. The separator for a nonaqueous secondary battery of the invention includes a porous substrate and an adhesive porous layer formed on at least one side of the porous substrate and containing a polyvinylidene-fluoride-based resin. The separator for a nonaqueous secondary battery is characterized in that the polyvinylidene-fluoride-based resin has a weight average molecular weight of 600,000 to 3,000,000.
摘要:
An object of the invention is to provide a separator for a nonaqueous secondary battery, which has good adhesion to electrodes, is capable of ensuring sufficient ion permeability even after attachment to electrodes, and further includes an adhesive porous layer having dynamic physical properties sufficient to withstand heat pressing and a uniform porous structure. The separator for a nonaqueous secondary battery of the invention includes a porous substrate and an adhesive porous layer that is formed on at least one side of the porous substrate and contains a polyvinylidene-fluoride-based resin. The separator for a nonaqueous secondary battery is characterized in that the adhesive porous layer has a porosity of 30 to 60% and an average pore size of 1 to 100 nm.
摘要:
A polymer for bonding the positive electrode and negative electrode of a lithium secondary battery, which includes a positive electrode, a negative electrode and an electrolyte solution, with a separator arranged between the positive electrode and the negative electrode. The polymer contains a cationically polymerizable monomer unit (A), a monomer unit (B) providing affinity to the electrolyte solution, a monomer unit (C) providing poor solubility to the electrolyte solution, and a monomer unit (D) containing an anionic or nonionic hydrophilic group. This polymer can be obtained through radical polymerization such as emulsion polymerization or suspension polymerization, and is characterized by having a dissolution rate into a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) [EC:DEC=5:5 (weight ratio)] of not more than 10% by weight.