摘要:
A virtual core management system including a physical core and a first virtual core including a collection of logical states associated with execution of a first program. The first virtual core is mapped to the physical core. The virtual core management system further includes a second virtual core including a collection of logical states associated with execution of a second program, and a virtual core management component configured to unmap the first virtual core from the physical core and map the second virtual core to the physical core in response to the virtual core management component detecting that the physical core is idle.
摘要:
The present disclosure provides methods and systems adapted for use with a processor having one or more physical cores. The methods and systems include a virtual core management component adapted to map one or more virtual cores to at least one of the physical cores to enable execution of one or more programs by the at least one physical core. The one or more virtual cores include one or more logical states associated with the execution of the one or more programs. The methods and systems may include a memory component adapted to store the one or more virtual cores. The virtual core management component may be adapted to transfer the one or more virtual cores from the memory component to the at least one physical core.
摘要:
A virtual core management system including one or more physical cores and one or more virtual cores. Each virtual core respectively includes a collection of logical states associated with execution of a corresponding program. The virtual core management system further includes one or more interrupt controllers configured to send one or more interrupt signals to interrupt execution of a corresponding program associated with at least one of the one or more virtual cores, and a virtual core management component configured to map the at least one virtual core to one of the one or more physical cores and route the one or more interrupt signals to the corresponding physical core.
摘要:
Software hints embedded in branch instructions direct selection of one of a plurality of branch predictors to use when processing the branch instructions, leading to improved branch prediction (i.e. fewer mis-predictions) over conventional schemes. A software agent assembles branch instructions having associated respective branch predictor control fields compatible with a branch predictor selector and a plurality of branch predictors. Each branch predictor control field is used to perform branch predictor selection, branch predictor control, or both. Branch predictor selection enables selective branch prediction according to an appropriate one of the branch predictors as determined by the software agent by examining context surrounding the branch instruction. Branch predictor control enables control of operation of one or more of the branch predictors. For example, a history-based branch predictor may be instructed to provide branch prediction according to a history-depth specified by the branch predictor control.
摘要:
Managing speculative execution via groups of one or more actions corresponding to atomic traces enables efficient processing of flag-related actions, as atomic traces advantageously enable single checkpoints of flag values at atomic trace boundaries. Checkpointing flags during atomic trace renaming in a processor system uses a flag checkpoint table to store a plurality of flag checkpoints, each corresponding to an atomic trace. The table is selectively accessed to provide flag information to restore speculative flags when an atomic trace is aborted. A corresponding flag checkpoint is stored when an atomic trace is renamed. An action that updates flags updates all entries in the table corresponding to younger atomic traces. If the atomic trace is aborted, then the corresponding flag checkpoint is used for restoration of flag state.
摘要:
A software agent assembles prefetch hint instructions or prefixes defined in an instruction set architecture, the instructions/prefixes conveying prefetch hint information to a processor enabled to execute instructions according to the instruction set architecture. The prefetch hints are directed to control operation of one or more hardware memory prefetcher units included in the processor, providing for increased efficiency in memory prefetching operations. The hints may optionally provide any combination of parameters describing a memory reference traffic pattern to search for, when to begin searching, when to terminate prefetching, and how aggressively to prefetch. Thus the hardware prefetchers are enabled to make improved traffic prediction, providing more accurate results using reduced hardware resources. The hints may include any combination of specific pattern hints (one/two/N-dimensional strides, indirect, and indirect-stride), modifiers including sparse and region, and a prefetch-stop directive. The parameters may include any combination of a count, a priority and a ramp.
摘要:
A processing system and method of operation are provided. In response to multiple branch instructions, an instruction is processed prior to execution of the branch instructions. In response to execution of any of the branch instructions, the processing of the instruction is cancelled prior to completion of the executed branch instruction.
摘要:
Reducing power consumption in microprocessors for the processing of common values. Common values provided in at least one received operation are encoded into encoded common values having a lower number of bits than the common values prior to encoding. In one aspect, a separate encoding bus is used to provide the encoded common values in various processing of additional received operations in the microprocessor instead of a full-bit bus of the microprocessor, the encoding bus having less bits than the full-bit bus. In another aspect, a result of the operation is predicted based on at least one encoded common value and execution of the operation is bypassed.
摘要:
Managing speculative execution via groups of one or more actions corresponding to atomic traces enables efficient processing of flag-related actions, as atomic traces advantageously enable single checkpoints of flag values at atomic trace boundaries. Checkpointing flags on-demand for atomic traces in a processor system uses a flag checkpoint table to store a plurality of flag checkpoints, each corresponding to an atomic trace. The table is selectively accessed to provide flag information to restore speculative flags when an atomic trace is aborted. A corresponding flag checkpoint is allocated to an invalid state when an atomic trace is renamed. An action that updates flags initializes the corresponding flag checkpoint (if invalid). If the atomic trace is aborted, then the table is searched according to program order starting with the entry corresponding to the aborted atomic trace. The first (if any) valid checkpoint found is used for flag restoration.
摘要:
A small and power-efficient buffer/mini-cache sources and sinks selected DMA accesses directed to a memory space included in a coherency domain of a microprocessor when cached data in the microprocessor is inaccessible due to any or all of the microprocessor being in a low-power state not supporting snooping. Satisfying the selected DMA accesses via the buffer/mini-cache enables reduced power consumption by allowing the microprocessor (or portion thereof) to remain in the low-power state. The buffer/mini-cache may be operated (temporarily) incoherently with respect to the cached data in the microprocessor and flushed before deactivation to synchronize with the cached data when the microprocessor (or portion thereof) transitions to a high-power state that enables snooping. Alternatively the buffer/mini-cache may be operated in a manner (incrementally) coherent with the cached data. The microprocessor implements one or more processors having associated cache systems (such as various arrangements of first-, second-, and higher-level caches).