Abstract:
Systems and methods involving hydrocatalytic reactions that use molecular hydrogen obtained from a biogas generated from at least a portion of the hydrocatalytic reaction product. Hydrocatalytic reactions can require significant quantities of molecular hydrogen, particularly if the molecular hydrogen is being introduced under dynamic flow conditions. The present disclosure provides systems and methods that can allow for reducing the carbon footprint of the fuels formed from the hydrocatalytic reaction because at least a portion of the hydrogen used in the hydrocatalytic reaction has low carbon footprint. A fuel with low carbon footprint can qualify for certain governmental status that provides certain benefits.
Abstract:
A process for conversion of a cellulosic material comprising a) a liquefaction step, comprising contacting a cellulosic material with a liquid solvent at a temperature of equal to or more than 200° C.; or contacting a cellulosic material with a liquid solvent at a temperature of equal to or more than 100° C. in the presence of a catalyst, to produce a final liquefied product; b) a catalytic cracking step, comprising contacting at least part of the final liquefied product with a fluidized catalytic cracking catalyst at a temperature of equal to or more than 400° C., to produce one or more cracked products.
Abstract:
A bottom fraction of a product of a hydrocatalytic reaction is gasified to generate hydrogen for use in further hydrocatalytic reactions. In one embodiment, an overhead fraction of the hydrocatalytic reaction is further processed to generate higher molecular weight compounds. In another embodiment, a product of the further processing is separated into a bottom fraction and an overhead fraction, where the bottom fraction is also gasified to generate hydrogen for use in further hydrocatalytic reactions.
Abstract:
A bottom fraction of a product of a hydrocatalytic reaction is gasified to generate hydrogen for use in further hydrocatalytic reactions. In one embodiment, one or more volatile organic compounds is also vaporized using heat generated in the gasification process. In one embodiment, an overhead fraction of the hydrocatalytic reaction is further processed to generate higher molecular weight compounds. In another embodiment, a product of the further processing is separated into a bottom fraction and an overhead fraction, where the bottom fraction is also gasified to generate hydrogen for use in further hydrocatalytic reactions.
Abstract:
A method of extending the catalyst life of a hydrogenolysis catalyst activity in the presence of biomass and aqueous solution is described. Lignocellulosic biomass solids and aqueous solution is provided to in a hydrothermal digestion unit in the presence of a digestive solvent, and a supported hydrogenolysis catalyst containing (a) sulfur, (b) Mo or W, and (c) Co, Ni or mixture thereof, incorporated into a solid metal oxide support. The lignocellulosic biomass solids in the hydrothermal digestion unit is heated to a temperature in the range of 180° C. to less than 300° C. in the presence of digestive solvent, hydrogen, and in the range of 0.15 wt. % to 12.5 wt. %, based on catalyst, of H2S or H2S source at least partially soluble in aqueous solution, and the supported hydrogenolysis catalyst forming a product solution containing plurality of oxygenated hydrocarbons, the hydrothermal digestion unit maintaining protective sulfur concentration.
Abstract:
A method comprises introducing biomass solids to a digester comprising a reactor, a circulation system including a first injector; providing a catalyst-containing digestion medium and an organic solvent layer floating thereon; circulating the medium through the circulation system; flowing gas through the medium; keeping the medium hot enough to digest the solids; and operating the digester such a headspace exists above the solvent. The digester includes a first eductor having an inlet in the headspace, a second eductor having an inlet in the organic layer, and a downdraft tube having an inlet in the digestion medium. A motive fluid flowing from the first injector draws gas from the headspace into the first eductor, a motive fluid flowing from the first eductor draws fluid from the organic layer into the second eductor, and a motive fluid flowing from the second eductor draws fluid from the digestion medium into the downdraft tube.
Abstract:
Systems and methods involving hydrocatalytic reactions that thermal energy obtained from combustion of coke generated by coking of at least a portion of the hydrocatalytic reaction product. Hydrocatalytic reactions can require substantial amounts of thermal energy. The present disclosure provides systems and methods that can allow for reducing the carbon footprint of the fuels formed from the hydrocatalytic reaction because at least a portion of the thermal energy used in the hydrocatalytic reaction has low carbon footprint. A fuel with low carbon footprint can qualify for certain governmental status that provides certain benefits.
Abstract:
A process for the high temperature conversion of a cellulosic material into a bio-oil, wherein, under hydrogen atmosphere and in the presence of a catalyst, the cellulosic material is contacted in a reaction vessel with a liquid solvent, wherein water is present from 5% up to 80 wt %, based on the total amount of cellulosic material and liquid solvent present in the vessel, at an a controlled operating pressure of from equal to or more than 2.0 MPa to equal to or less than 13.0 MPa, wherein the partial hydrogen pressure contributes from equal to or more than 1.0 MPa to equal to or less than 6.0 MPa, and the total vapour pressure being lower than the autogenous pressure at the operating temperature and contributing in the range of from equal to or more than 1.0 MPa to equal to or less than 7.0 MPa, to produce a product mixture comprising bio-oil.
Abstract:
A process for regenerating a coked catalytic cracking catalyst which the carbon-containing deposits on the catalyst contains at least 1 wt % bio-carbon, based on the total weight of carbon present in the carbon-containing deposits is provided. Such coked catalytic cracking catalyst is contacted with an oxygen containing gas at a temperature of equal to or more than 550° C. in a regenerator to produce a regenerated catalytic cracking catalyst, heat and carbon dioxide.
Abstract:
Systems and methods for supplying hydrogen to a hydrocatalytic reaction of a biomass feedstock by gasification of a biomass material. In a preferred embodiment, the biomass material comprises hog fuel. In one embodiment, an overhead fraction of the hydrocatalytic reaction is further processed to generate higher molecular weight compounds, which can be used to produce a fuel product. In one embodiment, the biomass material comprises an outer bark layer of wood logs used as part of the biomass feedstock subject to the hydrocatalytic reaction.