Abstract:
A light guiding system includes an ambient light gathering system for absorbing the ambient light to generate absorbed light; multiple light guiding devices each of which includes a light input end near the ambient light gathering system and a light output end near an incident side of a light guiding plate, and multiple light diffusion devices between the light output end and the incident side of the light guiding plate, for broadening a light-emitting angle of the light output end. The absorbed light enters the light input end and is guided to the light output end to form a backlight source. The light guiding system utilizes a light diffusion device to broaden the light-emitting angle of the light output end such that the light uniformity of the light output end is improved and the optical quality of the edge-lighting backlight module is raised.
Abstract:
A light guiding system, an edge-type backlight module and a liquid crystal display are disclosed. The light guiding system includes an ambient light collection system facing toward ambient light for absorbing the ambient light, a plurality of light guiding devices, and a fluorescent film arranged between the light emitting ends and the light incident surface. Each of the plurality of light guiding devices includes a light emitting end and a light incident end. The light emitting ends are arranged close to a light incident surface of a light guiding plate, and the light incident ends are arranged close to the ambient light collection system. The absorbed ambient light enters the light incident ends and propagates toward the light emitting ends. By adopting the fluorescent film, the light beams from the light emitting ends are diffused such that brightness difference on the light incident surface is enhanced.
Abstract:
A method for manufacturing a printed circuit board of a backlight module is provided. The printed circuit board includes a light bar region and a heat dissipating region. The light bar region used for mounting a light bar of the backlight module and formed with a conductive circuit for supplying power for the light bar. The heat dissipating region is connected with the light bar region. A connection location of the light bar region and the heat dissipating region is subjected to cutting to form a slot located at a side of the printed circuit board in order to prevent short-circuiting between the heat dissipating region and the conductive circuit of the light bar region. The cutting is made to partly penetrate through the thickness of a dielectric layer on which the conductive circuit is formed in order to completely separate the light bar region from the heat dissipating region.
Abstract:
A light guiding system includes an ambient light gathering system, multiple light guiding devices and a wedge light guiding bar. The ambient light gathering system facing ambient light is used for absorbing the ambient light. Each light guiding device absorbs the absorbed light. The wedge light guiding bar has a light-out surface and a light-in surface coupled to the light-out surface. The light-in surface is a wide surface coupled to an inclined surface. The light-out surface is opposite to the inclined surface and next to a light-in side of a light guide plate. The wedge light guiding bar for use in the light guiding system, an edge-lighting backlight module and an LCD device can reduce cost of material and weight. Also, the light uniformity of the light output end is improved and the optical quality of the edge-lighting backlight module is raised.
Abstract:
A light guiding system, an edge-type backlight module and a liquid crystal display are disclosed. The light guiding system includes an ambient light collection system facing toward ambient light for absorbing the ambient light, a plurality of light guiding devices, and a fluorescent film arranged between the light emitting ends and the light incident surface. Each of the plurality of light guiding devices includes a light emitting end and a light incident end. The light emitting ends are arranged close to a light incident surface of a light guiding plate, and the light incident ends are arranged close to the ambient light collection system. The absorbed ambient light enters the light incident ends and propagates toward the light emitting ends. By adopting the fluorescent film, the light beams from the light emitting ends are diffused such that brightness difference on the light incident surface is enhanced.
Abstract:
A light guiding system, an edge type backlight module and a liquid crystal display are disclosed. The light guiding system includes an ambient light collection system facing toward ambient light to absorb the ambient light and to generate absorbed light, a plurality of light guiding devices, and at least a first and a second light guiding bar. Each of the light guiding devices includes a light emitting end and a light incident end. The light incident ends of the optical fibers are arranged close to the ambient light collection system, and the lights entered from the light incident ends are propagated toward the light emitting ends. Each of the light guiding bars includes a light emitting surface, a light incident surface connected to the light emitting surface, and a first lateral side opposite to the light incident surface.
Abstract:
A light guiding system includes an ambient light gathering system, multiple light guiding devices and a wedge light guiding bar. The ambient light gathering system facing ambient light is used for absorbing the ambient light. Each light guiding device absorbs the absorbed light. The wedge light guiding bar has a light-out surface and a light-in surface coupled to the light-out surface. The light-in surface is a wide surface coupled to an inclined surface. The light-out surface is opposite to the inclined surface and next to a light-in side of a light guide plate. The wedge light guiding bar for use in the light guiding system, an edge-lighting backlight module and an LCD device can reduce cost of material and weight. Also, the light uniformity of the light output end is improved and the optical quality of the edge-lighting backlight module is raised.
Abstract:
The present invention discloses a backlight module, a printed circuit board used for a backlight module, and a manufacturing method for the same. The printed circuit board comprises a light bar region and a heat dissipating region. The light bar region used for mounting a light bar of the backlight module and formed with a conductive circuit for supplying power for the light bar; and the heat dissipating region connected with the light bar region, wherein, a connection location of the light bar region and the heat dissipating region disposes with a cutting slot and the cutting slot locates at a side of the printed circuit board for mounting the light bar in order to prevent a short-circuit connection between the heat dissipating region and the conductive circuit of the light bar region through the cutting slot. The present invention can avoid the short circuit problem due to uncompleted etching of the conductive layer on the heat dissipating region of the printed circuit board.
Abstract:
A light guiding system includes an ambient light gathering system for absorbing the ambient light to generate absorbed light; multiple light guiding devices each of which includes a light input end near the ambient light gathering system and a light output end near an incident side of a light guiding plate, and multiple light diffusion devices between the light output end and the incident side of the light guiding plate, for broadening a light-emitting angle of the light output end. The absorbed light enters the light input end and is guided to the light output end to form a backlight source. The light guiding system utilizes a light diffusion device to broaden the light-emitting angle of the light output end such that the light uniformity of the light output end is improved and the optical quality of the edge-lighting backlight module is raised.