Abstract:
During a downshift of a belt-drive continuously variable transmission, occurring owing to vehicle deceleration, a CVT controller foretells that a slippage between a drive belt and each of primary and secondary variable-width pulleys tends to occur, when a primary pulley pressure is less than a first predetermined pressure level and a primary pulley speed is less than a first predetermined rotational speed. When the belt slippage has been foretold, the CVT controller inhibits the primary pulley pressure from dropping by setting an actual transmission ratio calculated before a set time period from a time when the slippage has been foretold or a transmission ratio of a relatively higher speed side as compared with a ratio-change operating state obtained when the slippage has been foretold, to a desired transmission ratio, or by relatively rising a line pressure as compared with a line pressure level produced when the slippage has been foretold.
Abstract:
After an engine (1) has started, a controller (6) starts determining whether lockup should be prohibited or permitted based on the cooling water temperature of an engine (1) or the oil temperature of a transmission (2). Once it has been determined that lockup should be permitted, the controller (6) stops determining whether lockup should be prohibited or permitted until the next time the engine (1) is started. In this way, once the conditions for determining that lockup should be permitted hold, lockup prohibition or permission based on the engine cooling water temperature or transmission oil temperature is no longer determined, so repeat engaging and disengaging of the lockup clutch (5) due to fluctuations of engine cooling water temperature or transmission oil temperature, is prevented.
Abstract:
A predetermined control on an engine, i.e., a fuel-cut operation, is executed after an accelerator has been released under predetermined conditions when vehicle speed is higher than a fuel-cut vehicle speed value and engine speed is higher than or equal to a fuel-cut engine speed value. In an automatic transmission drivingly connected to the engine via a torque converter, a gear shift is initiated after the accelerator has been released. During a shift of the same kind, there occurs a variability in shift shock between the cases with and without the execution of the fuel-cut operation. In order to reduce this variability, the execution of the fuel-cut operation is inhibited until completion of the shift after the accelerator has been released under the predetermined conditions.
Abstract:
For a predetermined period following the issuance of a shift command signal, the output of a engine speed signal is temporarily ignored. Upon the expiration of the predetermined time, the engine speed is sampled and if the rate of change thereof is above a given value, the initiation of the shift operation is deemed to have occurred.
Abstract:
A unified control device for engine and automatic transmission of an automotive vehicles serves to alleviate a racing select shock which occurs upon engagement of a driving clutch in the transmission when selecting a running range of the transmission to start the vehicle with an accelerator pedal depressed. The control device achieves a reduction control during changeover of the transmission into a running range from a racing state, to reduce at least one parameter representing the output power to be transmitted from the engine to driving wheels via the transmission, such as engine speed, engine output and/or transfer torque capacity of the clutch, etc. The reduction control is stopped as soon as the completion of engagement of the driving clutch has been detected, to allow the vehicle to be started without engine stalling.
Abstract:
A period time required for a gear shift operation is measured from the time at which a prime motor output speed starts decreasing to the time at which a psuedo speed ratio reaches a predetermined value. Based on the period of time measured, a line pressure is controlled during the period of time. Alternatively, a prime motor output torque is controlled during the period of time measured.
Abstract:
A control apparatus of hybrid vehicle has a drive mode change section, a temperature detection section detecting a second engagement element temperature, and a second engagement element protection control section. The drive mode change section changes drive modes of a first drive mode in which the first engagement element is disengaged and the second engagement element is engaged then the vehicle travels by only a driving force of the motor, a second drive mode in which the first and second engagement elements are respectively engaged then the vehicle travels by both driving forces of the engine and motor, and a third drive mode in which the second engagement element is slip-engaged then the vehicle travels by a driving force transmitted through the second engagement element. The second engagement element protection control section keeps an engine rotating state regardless of the drive mode when the second engagement element temperature is high.
Abstract:
A belt continuously-variable transmission control apparatus includes: a belt continuously-variable transmission including; a primary pulley arranged to receive a torque from a driving source; a secondary pulley arranged to output the torque to driving wheels; a belt wound around the primary pulley and the secondary pulley; a hydraulic pressure control section configured to control a hydraulic pressure of one of the primary pulley and the secondary pulley which is a capacity side, and thereby to bring the belt, the primary pulley and the secondary pulley to a slip state; and a torque control section configured to control the torque of the driving source, and thereby to bring the slip state to a predetermined slip state.
Abstract:
A belt continuously-variable transmission control apparatus includes: a belt continuously-variable transmission including; a primary pulley arranged to receive a torque from a driving source; a secondary pulley arranged to output the torque to driving wheels; a belt wound around the primary pulley and the secondary pulley; a hydraulic pressure control section configured to control a hydraulic pressure of one of the primary pulley and the secondary pulley which is a capacity side, and thereby to bring the belt, the primary pulley and the secondary pulley to a slip state; and a torque control section configured to control the torque of the driving source, and thereby to bring the slip state to a predetermined slip state.
Abstract:
In case information such as an actual gear ratio is not stored in an EEPROM 28 due to a trouble of a backup power source 29 or like when an initialization operation of a step motor 27 is performed at the time of start of a vehicle or during stoppage of the vehicle, an output torque of an engine is limited before the initialization operation. Thereby, even if an accelerator is depressed during the initialization operation of the step motor 27 in which a sufficient primary pulley pressure cannot be ensured, the output torque of the engine is limited, so that torque inputted to a V-belt type continuously variable transmission is small and slippage does not occurs between the primary pulley and a secondary pulley.