Abstract:
A belt continuously-variable transmission control apparatus includes: a belt continuously-variable transmission including; a primary pulley arranged to receive a torque from a driving source; a secondary pulley arranged to output the torque to driving wheels; a belt wound around the primary pulley and the secondary pulley; a hydraulic pressure control section configured to control a hydraulic pressure of one of the primary pulley and the secondary pulley which is a capacity side, and thereby to bring the belt, the primary pulley and the secondary pulley to a slip state; and a torque control section configured to control the torque of the driving source, and thereby to bring the slip state to a predetermined slip state.
Abstract:
A belt continuously-variable transmission control apparatus includes: a belt continuously-variable transmission including; a primary pulley arranged to receive a torque from a driving source; a secondary pulley arranged to output the torque to driving wheels; a belt wound around the primary pulley and the secondary pulley; a hydraulic pressure control section configured to control a hydraulic pressure of one of the primary pulley and the secondary pulley which is a capacity side, and thereby to bring the belt, the primary pulley and the secondary pulley to a slip state; and a torque control section configured to control the torque of the driving source, and thereby to bring the slip state to a predetermined slip state.
Abstract:
A control apparatus of a driving force in case of belt slipping includes a belt slip control detecting unit adapted to detect that the belt slip control is in execution, a belt contact radius ratio calculating unit adapted to calculate a belt contact radius ratio of the V-belt to the pulleys, and a power source output torque determining unit adapted to determine a target power output torque according to the belt contact radius ratio in execution of the belt slip control in response to signals from the belt slip control detecting unit and the belt contact radius ratio calculating unit.
Abstract:
A control apparatus of a driving force in case of belt slipping includes a belt slip control detecting unit adapted to detect that the belt slip control is in execution, a belt contact radius ratio calculating unit adapted to calculate a belt contact radius ratio of the V-belt to the pulleys, and a power source output torque determining unit adapted to determine a target power output torque according to the belt contact radius ratio in execution of the belt slip control in response to signals from the belt slip control detecting unit and the belt contact radius ratio calculating unit.
Abstract:
A shift control apparatus for an automatic transmission provides a normal-temperature shift pattern and a high-temperature shift pattern. The high-temperature shift pattern is selected when a transmission fluid temperature satisfies a predetermined condition. The switching of the shift pattern is inhibited if the vehicle speed is lower than a predetermined speed, even when the temperature related to the transmission or engine has been judged to be higher than a predetermined temperature.
Abstract:
A period time required for a gear shift operation is measured from the time at which a prime motor output speed starts decreasing to the time at which a psuedo speed ratio reaches a predetermined value. Based on the period of time measured, a line pressure is controlled during the period of time. Alternatively, a prime motor output torque is controlled during the period of time measured.
Abstract:
A shift control apparatus for an automatic transmission provides a normal-temperature shift pattern and a high-temperature shift pattern. The high-temperature shift pattern is selected when a temperature of hydraulic oil for the transmission satisfies a predetermined condition. Once the high-temperature shift pattern has been selected, the apparatus inhibits the switching to the high-temperature shift pattern for a predetermined duration, thereby to avoid an excessively frequent hunting between the shift patterns.
Abstract:
An apparatus is disclosed which prevents occurrence of an engine stalling in a power train of an automotive vehicle, including an engine and a lock-up type automatic transmission. The apparatus is operative during a braking operation of the vehicle and includes an engine controller to perform an idling speed control for the engine, and a transmission controller to perform a lock-up releasing control for releasing the torque converter from the lock-up mode. When the lock-up releasing control is being performed, the engine controller continuously performs the idling speed control and thereby prevents occurrence of engine stalling.
Abstract:
A speed change ratio control unit for a continuously variable transmission that uses a step motor as a driving actuator of a speed change control valve that compares a variable ASTP representing a step position of the step motor and a step position BSTP of the step motor that is necessary for realizing a desired speed change ratio at every predetermined operation cycle, and if ASTP≠BSTP is satisfied determines that a step-out has occurred on the step motor.
Abstract:
During a downshift of a belt-drive continuously variable transmission, occurring owing to vehicle deceleration, a CVT controller foretells that a slippage between a drive belt and each of primary and secondary variable-width pulleys tends to occur, when a primary pulley pressure is less than a first predetermined pressure level and a primary pulley speed is less than a first predetermined rotational speed. When the belt slippage has been foretold, the CVT controller inhibits the primary pulley pressure from dropping by setting an actual transmission ratio calculated before a set time period from a time when the slippage has been foretold or a transmission ratio of a relatively higher speed side as compared with a ratio-change operating state obtained when the slippage has been foretold, to a desired transmission ratio, or by relatively rising a line pressure as compared with a line pressure level produced when the slippage has been foretold.