摘要:
A staining composition for use in manufacturing artificial tooth, etc. which is composed of Ca and P at their atomic ratio (Ca/P) in a range of from 0.05 to 0.33; and 5 to 28 mol % of Al.sub.2 O.sub.3.
摘要:
An improved fluid recycling apparatus and a fuel cell system comprising the same effectively recycle moisture contained in fluid circulating in a fuel cell system and operate independent of orientation. The fluid recycling apparatus includes an electric penetration pump and a gas/liquid separation unit. The electric penetration pump has first and second electrodes and an electric penetration layer interposed between the first and second electrodes. The electric penetration pump directs a liquefied fluid through an electric fluid passage formed in the electric penetration layer by applying a voltage between the first electrode and the second electrode. The gas/liquid separation unit is disposed upstream of the electric fluid passage, contacting the electric penetration pump, and comprises a porous material that can absorb the liquefied fluid. The gas/liquid separation unit comprises at least one fluid inflow hole through which a mixture of a gaseous fluid and a liquefied fluid is introduced, and at least one gas discharge hole communicating with the fluid inflow hole configured for discharging the gaseous fluid.
摘要:
An electroosmotic flow pump is filled with a driving liquid exhibiting electroosmotic phenomenon, and a transport liquid capable of noncontact movement through a valve as the driving liquid moves. Since only the driving liquid can pass through an electroosmotic material, even a transport liquid not exhibiting electroosmotic phenomenon can be transported by utilizing the electroosmotic flow pump. Consequently, the electroosmotic flow pump can transport any transport liquid stably so long as the driving liquid exhibits electroosmotic phenomenon.
摘要:
A porous sintered material is produced which is suitable as an electroosmotic material constituting an electroosmotic flow pump. At least one member selected from BaO, SrO, CaO, TiO2, ZrO2, Na2O and K2O or at least one member selected from a natural mineral substance containing aluminum silicate (e.g., alkali feldspar, kaolinite, petalite), BaSiO3, BaTiO3, BaZrO3, BaSiO3 and SiC is added in the total amount of 0.05 to 10 parts by weight to 100 parts by weight of fused quartz or fused silicate (matrix: SiO2). The matrix may be SiO2—Al2O3 which is composed of either one of fused quartz and fused silicate and fused alumina added thereto.
摘要:
In an electroosmosis pump, a bubble separation member is provided at an exit side chamber so as to be separated from an exit side electrode, a gas vent member is provided at that side section of a pump container which is near the exit side electrode, and a gas vent member is provided at that side section of the pump container which is near an entrance side electrode. A self-filling mechanism is placed in an entrance side chamber, and the self-filling mechanism is composed of a liquid drawing member in contact with an electroosmosis material via the entrance side electrode, and of an air vent path formed between a member surrounding a side section of the liquid drawing member and the inner wall of the pump container.
摘要:
A pipette core member is used in a pipette for sampling a sample. This pipette core member includes: a pump body including a reservoir communicated with one suction/discharge port of an electroosmotic flow pump, the electroosmotic flow pump and the reservoir being integrally formed; and a capillary connected to the electroosmotic flow pump and communicated with the other suction/discharge port of the electroosmotic flow pump. The capillary is secured to the pump body.
摘要:
A pipette core member is used in a pipette for sampling a sample. This pipette core member includes: a pump body including a reservoir communicated with one suction/discharge port of an electroosmotic flow pump, the electroosmotic flow pump and the reservoir being integrally formed; and a capillary connected to the electroosmotic flow pump and communicated with the other suction/discharge port of the electroosmotic flow pump. The capillary is secured to the pump body.
摘要:
Disclosed is a connecting structure of a liquid sending apparatus, including: an electroosmotic flow pump having first and second electrodes upstream and downstream of an electroosmosis material; a flow-path structure which defines with flow-paths for liquid upstream and downstream of the electroosmotic flow pump, which is provided upstream of the electroosmotic flow pump with a ventilation hole communicating with inside and outside of the flow-path, and which is provided with a hydrophobic film which covers the hole and is permeable to bubbles; and a liquid-absorbing body absorbs liquid, which is provided in the flow-path upstream of the electroosmotic flow pump, which comes into abutment against a surface of the electroosmosis material on which the first electrode is provided, and which is formed with a bubble removing passage which passes through the liquid-absorbing body from a hydrophobic film side thereof to the abutment surface against the electrode.
摘要:
A projection is formed on a pump body of an electroosmotic flow pump so as to face a communication hole of a micro fluid chip. When the projection and the communication hole are fitted together, a first flow path of the pump and a second flow path of the micro fluid chip are communicated and the pump is fixed to the micro fluid chip. At the same time, the connection between the first flow path and the second flow path is sealed to prevent leakage of liquid gas, etc. to the outside.
摘要:
Disclosed is a connecting structure of a liquid sending apparatus, including: an electroosmotic flow pump having first and second electrodes upstream and downstream of an electroosmosis material; a flow-path structure which defines with flow-paths for liquid upstream and downstream of the electroosmotic flow pump, which is provided upstream of the electroosmotic flow pump with a ventilation hole communicating with inside and outside of the flow-path, and which is provided with a hydrophobic film which covers the hole and is permeable to bubbles; and a liquid-absorbing body absorbs liquid, which is provided in the flow-path upstream of the electroosmotic flow pump, which comes into abutment against a surface of the electroosmosis material on which the first electrode is provided, and which is formed with a bubble removing passage which passes through the liquid-absorbing body from a hydrophobic film side thereof to the abutment surface against the electrode.