Abstract:
A shift register and a shift register are provided. The shift register comprises the switch circuit, the latch circuit, and the inverter circuit 170. The shift register set, by alternately-serially connecting two types of shift registers, can receive two clock signals and an initial pulse signal to control the output waveform. The output of the present stage shift register can be used to control the turn-on time of the nest stage shift register. Further, by changing the circuit driving signal from the dynamic signal to the static signal, the circuit can operate only when the signal is “0” or “1” without being affected by the signal rising time and the falling time so that the circuit can operate in a more stable status.
Abstract:
A shift register and a shift register are provided. The shift register comprises the switch circuit, the latch circuit, and the inverter circuit 170. The shift register set, by alternately-serially connecting two types of shift registers, can receive two clock signals and an initial pulse signal to control the output waveform. The output of the present stage shift register can be used to control the turn-on time of the nest stage shift register. Further, by changing the circuit driving signal from the dynamic signal to the static signal, the circuit can operate only when the signal is “0” or “1” without being affected by the signal rising time and the falling time so that the circuit can operate in a more stable status.
Abstract:
A DC/DC converter. In the DC/DC converter, a DC/DC conversion circuit provides an output voltage to a storage capacitor upon receiving an enable signal. First and second resistors are connected in series to produce a first voltage according to the output voltage. A Schmitt trigger is coupled to the first voltage to output a first control signal through an inverter when the first voltage is smaller than a second voltage and to output a second control signal through the inverter when the first voltage is higher than a third voltage. An oscillator is turned off upon receiving the first control signal such that the DC/DC conversion circuit stops providing the output voltage, and is turned on and outputs the enable signal upon receiving the second control signal such that the DC/DC conversion circuit provides the output voltage to the storage capacitor.
Abstract:
The present invention discloses an RF device for a wireless communication device, including a grounding element, an antenna, including a radiating element, a feed-in element, a coupling element, a switch, coupled between the coupling element and the grounding element, for connecting or disconnecting the grounding element to the coupling element, such that the antenna respectively operates in a first frequency band and a second frequency band, and a grounding terminal, for coupling the grounding element, a capacitive sensing element, for sensing an environment capacitance within a specific range through the radiating element, at least one capacitor, for blocking a DC route from the grounding terminal to the grounding element.
Abstract:
A system for displaying images is disclosed. A display device comprises a first substrate comprising a plurality of pixels, each comprising RGB transparent sub-pixel regions. A second substrate comprises RGB regions opposite the first substrate, wherein the transparent sub-pixel regions respectively correspond to the three major color regions. A light blocking layer is disposed in one of the transparent sub-pixel regions of the first substrate. A photo spacer corresponding to the light blocking layer is formed, supporting the opposite first and second substrates.
Abstract:
The LCD device includes a pixel circuit and a driving circuit. The pixel circuit comprises thin film transistors serving for driving pixels of the LCD The driving circuit is coupled to the pixel circuit, generating a driving signal for driving the transistors. The gate terminal driving signal of the pixel transistors has a high state and a low state, and the threshold voltage of the transistor is set at a level at zero volt, or depending on whether the transistor is n-type or p-type, between zero volt and the low or high states of the gate terminal driving signal, respectively.
Abstract:
Ultrahigh vacuum chemical vapor deposition (UHV/CVD) and chemical mechanical polishing (CMP) systems are used in a method which can fabricate polycrystalline silicon (poly-Si) and polycrystalline silicon-germanium (poly-Si.sub.1-x -Ge.sub.x) thin film transistors at low temperature and low thermal budget. Poly-Si and poly-Si.sub.1-x -Ge.sub.x can be deposited by UHV/CVD without any anneal step. And due to the ultra low base pressure and ultraclean growth environment, the As-deposited poly films have low defect densities. However, the surface morphology retards the usage of the fabricating top-gate poly TFT's. In this invention, the CMP system is used for improving the surface morphology, high performance poly-Si and poly-Si.sub.1-x -Ge.sub.x TFT's can be obtained.
Abstract:
A method for fabricating a self-aligned thin-film transistor, in accordance with the present invention, first involves forming a gate electrode on an insulating layer. Next, a gate dielectric layer is formed to enclose the gate electrode. Subsequently, a semiconductor layer, a conducting layer, and a first dielectric layer are formed to cover the substrate and the gate dielectric layer. Afterwards, a chemical mechanical polishing process is applied to subsequently polish the first dielectric layer and the conducting layer to expose the semiconductor layer above the gate electrode. Therefore, the conducting layer disposed at opposite sides of the gate electrode is self-aligned to act as the source/drain regions of the fabricated TFT device.
Abstract:
A wideband antenna includes a grounding element electrically connected to a ground, a radiating element, a matching adjustment element electrically connected to the radiating element, a feed-in element electrically connected between the matching adjustment element and the grounding element for receiving feed-in signals, and a shorting element electrically connected between the matching adjustment element and the grounding element. A width of the matching adjustment element is related to a bandwidth of the wideband antenna.
Abstract:
A radio-frequency (RF) device and a wireless communication device include a capacitive sensing unit capable of using a radiating element of an antenna to sensing an environment capacitance within a specified range, such that an RF signal processing device is capable of adjusting power of an RF signal accordingly, to prevent affecting a user. When the radiating element of the antenna includes a direct-current signal route to a ground terminal, the RF device and the wireless communication device further includes at least a capacitor for cutting off the direct-current signal route.