摘要:
Disclosed is a semiconductor device including a substrate for bonding (10a), and a semiconductor element part (25aa) which is bonded to the substrate (10a), and in which an element pattern (T) is formed, wherein in a bonded interface between the substrate (10a) and the semiconductor element part (25aa), recessed portions (23a) are formed in at least one of the substrate (10a) and the semiconductor element part (25aa).
摘要:
Disclosed is a glass substrate (20) that is capable of constituting a semiconductor device (10) when a monocrystalline silicon thin film (90) is provided on the surface of the substrate by transfer. The surface of the glass substrate (20) has a receiving surface (22) onto which the monocrystalline silicon thin film (90) can be provided. The height of the ripples on the receiving surface (22) having a period of 200 to 500 microns is no more than 0.40 nm.
摘要:
An element portion forming step includes an insulating film forming step of forming an insulating film on a surface of a base layer, a conductive layer forming step of uniformly forming a conductive layer on a surface of the insulating film, and an electrode forming step of patterning the conductive layer to form an electrode. A delamination layer forming step of ion implanting a delamination material into the base layer to form a delamination layer is performed before the electrode forming step.
摘要:
A semiconductor device (10) includes a support substrate (14), an adhered device part (11) adhered to the support substrate (14), a multilayer device part (13) stacked on the adhered device part (11), and an adjacent device part (12) formed in a region adjacent to the adhered device part on the support substrate (14). The adhered device part (11), the multilayer device part (13), and the adjacent device part (12) are electrically connected to one another.
摘要:
A method is disclosed for producing a semiconductor device produced by (i) doping hydrogen ions or rare gas ions into a device substrate in which a transfer layer (16) is formed, (ii) then bonding the device substrate to a carrier target substrate, and (iii) transferring the transfer layer (16) onto the carrier substrate (30) by cleaving the device substrate along a portion in which the hydrogen ions or the rare gas ions are doped, the method including providing a blocking layer (11) for blocking diffusion of a bubble-causing substance between (i) a bonding surface (13), which serves as a bonding interface between the device substrate and the carrier substrate, and (ii) the transfer layer (16). This prevents bubbles from forming at the bonding interface between the semiconductor substrate and the target substrate due to the diffusion of the bubble-causing substance.
摘要:
A semiconductor device (130) includes: a bonding substrate (100); a thin film element (80) formed on the bonding substrate (100); and a semiconductor element (90) bonded to the bonding substrate (100), the semiconductor element (90) including semiconductor element main body (50) and a plurality of underlying layers (51-54) stacked on a side of the semiconductor element main body (50) facing the bonding substrate (100), and each of the underlying layers (51-54) including an insulating layer and a circuit pattern in the insulating layer, wherein an end of the semiconductor element (90) facing the thin film element (80) is provided in a stepped form so that the closer to the bonding substrate the underlying layers arc, the farther ends of the underlying layers facing the thin film element protrude, the end of the semiconductor element (90) is covered with a resin layer (120), and the thin film element (80) is connected to the semiconductor element main body (50) via a connection line (121a) provided on the resin layer (120).
摘要:
A semiconductor device (130) including: a bonding substrate (100); a thin film element (80) formed on the bonding substrate (100); and a semiconductor element (90a) bonded to the bonding substrate (100), the semiconductor element including a semiconductor element main body (50) and a plurality of underlying layers (51-54) stacked on a side of the semiconductor element main body facing the bonding substrate (100), wherein the underlying layer (54) closest to the bonding substrate (100) includes an extended section (E) formed by extending the circuit pattern toward the thin film element (80), a resin layer (120) is provided between the thin film element (80) and the semiconductor element (90a), and the thin film element (80) is connected to the semiconductor element main body (50) via a connection line (121a) provided on the resin layer (120), the extended section (E), and the circuit patterns.
摘要:
The present invention provides a semiconductor device, a single-crystal semiconductor thin film-including substrate, and production methods thereof, each allowing single-crystal semiconductor thin film-including single-crystal semiconductor elements produced by being transferred onto a low heat resistant insulating substrate to have enhanced transistor characteristics.The present invention is a production method of a semiconductor device including single-crystal semiconductor thin film-including single-crystal semiconductor elements on an insulating substrate, the production method including the successive steps of a first heat treatment step and a second heat treatment step, wherein in the first heat treatment step, a single-crystal semiconductor thin film undergoes a heat treatment at lower than 650° C., the single-crystal semiconductor thin film containing a doped impurity and including at least part of each one of single-crystal semiconductor elements, the single-crystal semiconductor thin film bonded to an insulating substrate, and in the second heat treatment step, the single-crystal semiconductor thin film undergoes a heat treatment at 650° C. or higher for a time shorter than a treatment time in the first heat treatment step.
摘要:
A method for manufacturing a semiconductor device includes: an element portion formation step of forming an element portion on a base layer; a delaminating layer formation step of forming a delaminating layer in the base layer; a bonding step of bonding the base layer having the element portion to a substrate; and a separation step of separating and removing a portion of the base layer in the depth direction along the delaminating layer by heating the base layer bonded to the substrate. The method further includes, after the separation step, an ion implantation step of ion-implanting a p-type impurity element in the base layer for adjusting the impurity concentration of a p-type region of the element.
摘要:
The present invention is intended to provide a glass substrate (20), made of an insulating material, which can constitute a semiconductor apparatus (10) by transferring a single crystal silicon film (50) or a substrate including a semiconductor device onto a surface (24) of the insulating substrate, a transferred surface (26) being part of the surface (24), the single crystal silicon film (50) capable of being provided on the transferred surface (26), and the transferred surface (26) having an arithmetic mean roughness of not more than 0.4 nm.