摘要:
The present invention provides a semiconductor device having a recess-structured ohmic electrode, in which the resistance is small and variation in the resistance value caused by manufacturing irregularities is small. In the semiconductor device of the present invention, a two-dimensional electron gas layer is formed on the interface between a channel-forming layer and a Schottky layer by electrons supplied from the Schottky layer. The ohmic electrode comprises a plurality of side faces in ohmic contact with the two-dimensional electron gas layer. At least a part of side faces of the ohmic electrodes are non-parallel to a channel width direction. In a preferred embodiment of the present invention, the side faces have a saw tooth form or a comb tooth form. Since the contact area between the ohmic electrode and the two-dimensional electron gas layer is increased, ohmic resistance is reduced.
摘要:
Deterioration of the high frequency characteristics of a field effect transistor is prevented, and the on- and off-gate leakage currents are reduced. A field effect transistor comprises the fourth electrode 126 between the gate electrode 122 and the drain electrode 118. The fourth electrode is formed to satisfy the relationship of 0.25=(FP2−D)/Lgd=0.5, where Lgd represents a distance between the gate and drain electrodes and FP2−D does the distance between the drain and fourth electrodes.
摘要:
An opening for forming a gate electrode is provided by a first photoresist pattern formed on an insulating film. Reactive ion etching by inductively coupled plasma is applied to the insulating film through the first photoresist pattern as a mask to thereby expose the surface of a GaN semiconductor layer, evaporating thereon a gate metal such as NiAu, thereby forming the gate electrode by self-aligned process. This prevents an oxidized film from being formed on the surface of the semiconductor layer. After the gate electrode is formed, a second photoresist pattern is formed to form a field plate on the gate electrode and the insulating film through the second photoresist pattern as a mask. Thereby, Ti having a high adhesiveness with an insulating film made of SiN or the like can be used as a field plate metal.
摘要:
A field effect transistor includes an active layer formed on a semiconductor substrate, source and drain electrodes formed apart from each other on the active layer, a gate electrode formed between the source and drain electrodes, a first interlayer film formed on the active layer, a first field plate (FP) electrode connected to the gate electrode and provided on the first interlayer film between the gate and drain electrodes, a second interlayer film formed on the first interlayer film, and a second FP electrode connected to the source electrode and provided on the second interlayer film between the first FP and drain electrodes. The field effect transistor is provided which exhibits a comparatively high gain factor at high frequencies.
摘要:
The present invention provides a semiconductor device having a recess-structured ohmic electrode, in which the resistance is small and variation in the resistance value caused by manufacturing irregularities is small. In the semiconductor device of the present invention, a two-dimensional electron gas layer is formed on the interface between a channel-forming layer and a Schottky layer by electrons supplied from the Schottky layer. The ohmic electrode comprises a plurality of side faces in ohmic contact with the two-dimensional electron gas layer. At least a part of side faces of the ohmic electrodes are non-parallel to a channel width direction. In a preferred embodiment of the present invention, the side faces have a saw tooth form or a comb tooth form. Since the contact area between the ohmic electrode and the two-dimensional electron gas layer is increased, ohmic resistance is reduced.
摘要:
An opening for forming a gate electrode is provided by a first photoresist pattern formed on an insulating film. Reactive ion etching by inductively coupled plasma is applied to the insulating film through the first photoresist pattern as a mask to thereby expose the surface of a GaN semiconductor layer, evaporating thereon a gate metal such as NiAu, thereby forming the gate electrode by self-aligned process. This prevents an oxidized film from being formed on the surface of the semiconductor layer. After the gate electrode is formed, a second photoresist pattern is formed to form a field plate on the gate electrode and the insulating film through the second photoresist pattern as a mask. Thereby, Ti having a high adhesiveness with an insulating film made of SiN or the like can be used as a field plate metal.
摘要:
The present invention provides a semiconductor device having a recess-structured ohmic electrode, in which the resistance is small and variation in the resistance value caused by manufacturing irregularities is small. In the semiconductor device of the present invention, a two-dimensional electron gas layer is formed on the interface between a channel-forming layer and a Schottky layer by electrons supplied from the Schottky layer. The ohmic electrode comprises a plurality of side faces in ohmic contact with the two-dimensional electron gas layer. At least a part of side faces of the ohmic electrodes are non-parallel to a channel width direction. In a preferred embodiment of the present invention, the side faces have a saw tooth form or a comb tooth form. Since the contact area between the ohmic electrode and the two-dimensional electron gas layer is increased, ohmic resistance is reduced.
摘要:
The present invention provides a process for producing Droxidopa or a pharmaceutically acceptable salt thereof comprising a step of reacting threo-N-phthaloyl-3-(3,4-dihydroxyphenyl)-L-serine represented by the formula (1) with methylamine, whereby a process for producing threo-3-(3,4-dihydroxyphenyl)-L-serine (common name: Droxidopa), which is useful as an agent for treatment of peripheral orthostatic hypotension or an agent for treatment of Parkinson's disease, with high production efficiency and without requiring troublesome operations.
摘要:
A video processing device includes: encoder for generating a compressed video data by compressing and encoding a video data from camera unit; and system control unit for recording the compressed video data during a recording period from a recording start time to a recording end time as a video file and for recording, into recording memory, additional data as an index file that is information related to a compressed video data to be recorded in recording memory and, for reading the additional data together with the compressed video data from recording memory. System control unit records, into recording memory, the additional data recorded in the index file. The additional data is composed of additional data regarding the compressed video data recorded during the recording period and another additional data including a time code value showing a time at which a compressed video data to be recorded next is started.
摘要:
There is provided a substrate with a built-in semiconductor element, including: a first substrate at which a wiring layer is layered on a dielectric layer; a semiconductor element that is structured to include a distributed constant circuit, and at which plural bonding pads are formed at a peripheral region of a surface that faces the first substrate, and that is electrically connected to the wiring layer by an electrically-conductive member that has electrical conductivity and corresponds to the plural bonding pads; a supporting member that is disposed at an inner side region that is further toward an inner side than the peripheral region of the semiconductor element, and that is interposed between the semiconductor element and the first substrate and supports the semiconductor element; and a second substrate that is laminated to the first substrate and the semiconductor element.