Abstract:
A position measuring apparatus includes a holder having storage spaces in which a three-point support member for supporting a backside of a substrate being a mask at three points, and a vacuum chuck member for holding a backside of a substrate being a mask are prepared, a stage on which one of the three-point support member and the vacuum chuck member prepared in the storage spaces of the holder is mounted, a vacuum pump to hold and chuck the substrate through the vacuum chuck member in a state of being mounted on the stage, and a recognition unit to recognize a position of a pattern written on the substrate supported by the three-point support member mounted on the stage and a position of a pattern written on the substrate held by the vacuum chuck member on the stage.
Abstract:
A charged particle beam writing method includes measuring a topography of a backside of a substrate without an influence of a gravity sag, calculating a first positional deviation amount of a pattern written on a frontside of the substrate in a case of the backside of the substrate having been corrected to be flat, based on the the backside topography of the substrate, calculating a first coefficient of a first approximate expression indicating a positional deviation correction amount for correcting the first positional deviation amount, based on the first positional deviation amount, adding the first coefficient to a second coefficient of a second approximate expression indicating a positional deviation correction amount for correcting a second positional deviation amount of the pattern written on the frontside of the substrate in a case of the backside of the substrate having not been corrected to be flat, and writing the pattern on the frontside of the substrate utilizing a charged particle beam, based on one of a positional deviation correction amount obtained by a third approximate expression indicating a positional deviation correction amount using a third coefficient obtained as a result of the adding, and the positional deviation correction obtained by the second approximate expression.
Abstract:
The reference mark has steps and is formed on a sample. A stage moves in X and Y directions. The sample M is placed on the stage. An optical lever type height position sensor emits light to detect the reference mark FM′ by the stage being scanned. The spot position of light reflected on the sample is detected in position sensitive detector. The X and Y coordinates of the position of the stage positioned when the spot position of the reflected light is changed is detected. The detected X and Y coordinates are regarded as the position C of the reference mark FM′. The position of a phase defect D located in the sample M is specified on the basis of the position C of the reference mark FM′. The position of a portion on which writing is to be performed is determined on the basis of a relationship with the specified position of the phase defect D.
Abstract:
A correcting substrate for a charged particle beam lithography apparatus includes a substrate body using a low thermal expansion material having a thermal expansion lower than that of a silicon oxide (SiO2) material; a first conductive film arranged above the substrate; and a second conductive film selectively arranged on the first conductive film and having a reflectance higher than the first conductive film, wherein the low thermal expansion material is exposed on a rear surface of the correcting substrate.
Abstract:
The present invention provides an electron beam writing apparatus and an image placement error correcting method each capable of calculating a high-accuracy correction amount relative to an image placement error in consideration of a difference in required unit area of height distribution data between the shape of a back surface of an EUV mask and the shape of a surface of a pin chuck. Of back surface shape data of the EUV mask necessary to perform an image placement error correction of each pattern, the back surface shape data of a position brought into contact with each pin of the pin chuck is extracted. The image placement error is calculated only from the extracted back surface shape data.