摘要:
An indirectly induced tunnel emitter for a tunneling field effect transistor (TFET) structure includes an outer sheath that at least partially surrounds an elongated core element, the elongated core element formed from a first semiconductor material; an insulator layer disposed between the outer sheath and the core element; the outer sheath disposed at a location corresponding to a source region of the TFET structure; and a source contact that shorts the outer sheath to the core element; wherein the outer sheath is configured to introduce a carrier concentration in the source region of the core element sufficient for tunneling into a channel region of the TFET structure during an on state.
摘要:
A MOS device includes first and second source/drains spaced apart relative to one another. A channel is formed in the device between the first and second source/drains. A gate is formed in the device between the first and second source/drains and proximate the channel, the gate being electrically isolated from the first and second source/drains and the channel. The gate is configured to control a conduction of the channel as a function of a potential applied to the gate. The MOS device further includes an energy filter formed between the first source/drain and the channel. The energy filter includes a superlattice structure wherein a mini-band is formed. The energy filter is operative to control an injection of carriers from the first source/drain into the channel. The energy filter, in combination with the first source/drain, is configured to produce an effective zero-Kelvin first source/drain.
摘要:
A MOS device includes first and second source/drains spaced apart relative to one another. A channel is formed in the device between the first and second source/drains. A gate is formed in the device between the first and second source/drains and proximate the channel, the gate being electrically isolated from the first and second source/drains and the channel. The gate is configured to control a conduction of the channel as a function of a potential applied to the gate. The MOS device further includes an energy filter formed between the first source/drain and the channel. The energy filter includes an impurity band operative to control an injection of carriers from the first source/drain into the channel.
摘要:
The present invention is directed to an organic light emitting device (OLED) including a first electrode, a second electrode, at least one layer of organic material arranged between the first electrode and the second electrode, and a dielectric capping layer arranged on the second electrode opposite to the first electrode, wherein the capping layer comprises an outer surface, opposite to the second electrode, for emission of light generated in the at least one layer of organic material. The capping layer has the effect that a reflectance of external light is reduced whereas outcoupling of the light generated in the at least one layer of organic material through the capping layer is increased.
摘要:
A MOS device includes first and second source/drains spaced apart relative to one another. A channel is formed in the device between the first and second source/drains. A gate is formed in the device between the first and second source/drains and proximate the channel, the gate being electrically isolated from the first and second source/drains and the channel. The gate is configured to control a conduction of the channel as a function of a potential applied to the gate. The MOS device further includes an energy filter formed between the first source/drain and the channel. The energy filter includes an impurity band operative to control an injection of carriers from the first source/drain into the channel.
摘要:
A method for manufacturing an organic electronic device including a stack of layers with a lateral structure on a substrate, at least one of the layers being an organic material layer. A method includes with the step of providing a stamp with at least one protrusion of the surface area corresponding to the lateral structure. The stack of layers is deposited with a first face on the surface area of the protrusion of the stamp. A second face of the stack that is opposite to the first face is brought into adhesive contact with the substrate. The stamp is released from the stack.
摘要:
The present invention is directed to an organic light emitting device (OLED) including a first electrode, a second electrode, at least one layer of organic material arranged between the first electrode and the second electrode, and a dielectric capping layer arranged on the second electrode opposite to the first electrode, wherein the capping layer comprises an outer surface, opposite to the second electrode, for emission of light generated in the at least one layer of organic material. The capping layer has the effect that a reflectance of external light is reduced whereas outcoupling of the light generated in the at least one layer of organic material through the capping layer is increased.
摘要:
A method for manufacturing an organic electronic device including a stack of layers including a release layer, the stack having a lateral structure on a substrate, at least one of the layers being an organic material layer. A method includes with the step of providing a stamp with at least one protrusion of the surface area corresponding to the lateral structure. The stack of layers is deposited with a first face on the surface area of the protrusion of the stamp. A second face of the stack that is opposite to the first face is brought into adhesive contact with the substrate. The stamp is released from the stack.
摘要:
A MOS device includes first and second source/drains spaced apart relative to one another. A channel is formed in the device between the first and second source/drains. A gate is formed in the device between the first and second source/drains and proximate the channel, the gate being electrically isolated from the first and second source/drains and the channel. The gate is configured to control a conduction of the channel as a function of a potential applied to the gate. The MOS device further includes an energy filter formed between the first source/drain and the channel. The energy filter includes an impurity band operative to control an injection of carriers from the first source/drain into the channel.
摘要:
A MOS device includes first and second source/drains spaced apart relative to one another. A channel is formed in the device between the first and second source/drains. A gate is formed in the device between the first and second source/drains and proximate the channel, the gate being electrically isolated from the first and second source/drains and the channel. The gate is configured to control a conduction of the channel as a function of a potential applied to the gate. The MOS device further includes an energy filter formed between the first source/drain and the channel. The energy filter includes an impurity band operative to control an injection of carriers from the first source/drain into the channel.