摘要:
Many conventional lock-free data structures exploit techniques that are possible only because state-of-the-art 64-bit processors are still running 32-bit operating systems and applications. As software catches up to hardware, “64-bit-clean” lock-free data structures, which cannot use such techniques, are needed. We present several 64-bit-clean lock-free implementations: including load-linked/store conditional variables of arbitrary size, a FIFO queue, and a freelist. In addition to being portable to 64-bit software (or more generally full-architectural-width pointer operations), our implementations also improve on existing techniques in that they are (or can be) space-adaptive and do not require a priori knowledge of the number of threads that will access them.
摘要:
Many conventional lock-free data structures exploit techniques that are possible only because state-of-the-art 64-bit processors are still running 32-bit operating systems and applications. As software catches up to hardware, “64-bit-clean” lock-free data structures, which cannot use such techniques, are needed. We present several 64-bit-clean lock-free implementations: including load-linked/store conditional variables of arbitrary size, a FIFO queue, and a freelist. In addition to being portable to 64-bit software (or more generally full-architectural-width pointer operations), our implementations also improve on existing techniques in that they are (or can be) space-adaptive and do not require a priori knowledge of the number of threads that will access them.
摘要:
We have developed a methodology for transforming garbage collection-dependent algorithms, shared object implementations and/or concurrent software mechanisms into a form that does not presume the existence of an independent, or execution environment provided, garbage collector. Algorithms, shared object implementations and/or mechanisms designed or transformed using techniques described herein provide explicit reclamation of storage using lock-free pointer operations. Transformations can be applied to lock-free algorithms and shared object implementations and preserve lock-freedom of such algorithms and implementations. As a result, existing and future lock-free algorithms and shared object implementations that depend on a garbage-collected execution environment can be exploited in environments that do not provide garbage collection. Furthermore, algorithms and shared object implementations that employ explicit reclamation of storage using lock-free pointer operations such as described herein may be employed in the implementation of a garbage collector itself.
摘要:
A methodology has been discovered for transforming garbage collection-dependent algorithms, shared object implementations and/or concurrent software mechanisms into a form that does not presume the existence of an independent, or execution environment provided, garbage collector. Algorithms, shared object implementations and/or mechanisms designed or transformed using techniques described herein provide explicit reclamation of storage using lock-free pointer operations. Transformations can be applied to lock-free algorithms and shared object implementations and preserve lock-freedom of such algorithms and implementations. As a result, existing and future lock-free algorithms and shared object implementations that depend on a garbage-collected execution environment can be exploited in environments that do not provide garbage collection. Furthermore, algorithms and shared object implementations that employ explicit reclamation of storage using lock-free pointer operations such as described herein may be employed in the implementation of a garbage collector itself.
摘要:
Many conventional lock-free data structures exploit techniques that are possible only because state-of-the-art 64-bit processors are still running 32-bit operating systems and applications. As software catches up to hardware, “64-bit-clean” lock-free data structures, which cannot use such techniques, are needed. We present several 64-bit-clean lock-free implementations: including load-linked/store conditional variables of arbitrary size, a FIFO queue, and a freelist. In addition to being portable to 64-bit software (or more generally full-architectural-width pointer operations), our implementations also improve on existing techniques in that they are (or can be) space-adaptive and do not require a priori knowledge of the number of threads that will access them.
摘要:
Transactional programming promises to substantially simplify the development and maintenance of correct, scalable, and efficient concurrent programs. Designs for supporting transactional programming using transactional memory implemented in hardware, software, and a mixture of the two have emerged recently. However, various features and capabilities for debugging programs executed using transactional memory are absent from conventional debuggers. Because transactional memory implementations provide the “illusion” of multiple memory locations changing value atomically, there are challenges involved with integrating debuggers with such programs to provide the user with a coherent view of program execution. For instance, when execution is halted for debugging, a user may request to view a transactional variable or memory location. The transactional variable or memory location may have a pre-transaction value and a tentative value. Allowing a user to only view one of the values reduces the capacity of a user to reason about the behavior of the code.
摘要:
Apparatus, methods, and computer program products are disclosed for concurrently searching a memory containing a skiplist data structure. The method locates the skiplist data structure in the memory. The skiplist data structure includes a plurality of linked lists related by a skiplist invariant. Furthermore, the plurality of linked lists includes a first-level linked list and one or more higher-level linked lists. The skiplist data structure also includes a plurality of nodes, each of which includes a key field, at least one pointer field, and a lock field, respectively. Each of the plurality of nodes is linked to the first-level linked list through the at least one pointer field and ordered responsive to the key field. The method performs a search operation on the skiplist data structure, while the skiplist data structure is subject to concurrent alteration of the plurality of nodes by a plurality of execution threads that are configured to maintain the skiplist invariant and returns a result of the search operation.
摘要:
One embodiment of the present invention provides a system that facilitates selectively unmarking load-marked cache lines during transactional program execution, wherein load-marked cache lines are monitored during transactional execution to detect interfering accesses from other threads. During operation, the system encounters a release instruction during transactional execution of a block of instructions. In response to the release instruction, the system modifies the state of cache lines, which are specially load-marked to indicate they can be released from monitoring, to account for the release instruction being encountered. In doing so, the system can potentially cause the specially load-marked cache lines to become unmarked. In a variation on this embodiment, upon encountering a commit-and-start-new-transaction instruction, the system modifies load-marked cache lines to account for the commit-and-start-new-transaction instruction being encountered. In doing so, the system causes normally load-marked cache lines to become unmarked, while other specially load-marked cache lines may remain load-marked past the commit-and-start-new-transaction instruction.
摘要:
One embodiment of the present invention provides a system for releasing a memory location from transactional program execution. The system operates by executing a sequence of instructions during transactional program execution, wherein memory locations involved in the transactional program execution are monitored to detect interfering accesses from other threads, and wherein changes made during transactional execution are not committed until transactional execution completes without encountering an interfering data access from another thread. Upon encountering a release instruction for a memory location during the transactional program execution, the system modifies state information within the processor to release the memory location from monitoring. The system also executes a commit-and-start-new-transaction instruction, wherein the commit-and-start-new-transaction instruction atomically commits the transaction's stores, thereby removing them from the transaction's write set while the transaction's read set remains unaffected.
摘要:
One embodiment of the present invention provides a system that facilitates selectively unmarking load-marked cache lines during transactional program execution, wherein load-marked cache lines are monitored during transactional execution to detect interfering accesses from other threads. During operation, the system encounters a release instruction during transactional execution of a block of instructions. In response to the release instruction, the system modifies the state of cache lines, which are specially load-marked to indicate they can be released from monitoring, to account for the release instruction being encountered. In doing so, the system can potentially cause the specially load-marked cache lines to become unmarked. In a variation on this embodiment, upon encountering a commit-and-start-new-transaction instruction, the system modifies load-marked cache lines to account for the commit-and-start-new-transaction instruction being encountered. In doing so, the system causes normally load-marked cache lines to become unmarked, while other specially load-marked cache lines may remain load-marked past the commit-and-start-new-transaction instruction.