摘要:
This invention provides hexamethylenediamine muconate salt. This novel salt can be produced by bioconversion of toluene to muconic acid in the presence of hexamethylenediamine. Hydrogenation of this salt provides hexamethylenediamine adipate salt.
摘要:
This invention provides an improved fermentation process for bioconversion of toluene to muconic acid.The process involves operating the bioconversion system under phosphate-limiting conditions so as to achieve an increase in specific muconic acid productivity with a stabilized population of microorganism such as an ATCC No. 31,916 type of Pseudomonas putida Biotype A mutant strain.
摘要:
This invention provides a process for producing nylon 6,6 salt which involves bioconversion of toluene to muconic acid in the presence of hexamethylenediamine to yield hexamethylenediamine muconate salt. Hydrogenation of this salt provides an aqueous solution of the desired hexamethylenediamine adipate salt.
摘要:
This invention provides a continuous bioconversion process in which a non-growth toluene substrate is bio-oxidized by a specific microbe mutant strain to accumulated extracellular muconic acid at a bioreactor production rate of at least about 5 grams of muconic acid per liter of fermentation medium per hour.Essential features of the invention process include a continuous feed of whole cell-containing fermentation broth from an auxiliary cell growth and enzyme induction fermentation zone into the main fermentation zone, and a purge stream of whole cell-containing fermentation broth from the main fermentation zone.
摘要:
This invention provides an improved bioconversion system in which a non-growth organic substrate is bio-oxidized to a carboxylic acid product, and the carboxylic acid product is recovered as a precipitate and the resultant fermentation broth is suitable for recycle to the bioreactor. A useful water-insoluble salt is also recovered as a byproduct of the process.
摘要:
A method for recovering hepatitis B surface antigen protein from transformed yeast cells including the steps of (i) obtaining an aqueous homogenate of the yeast cells; (ii) enriching the hepatitis B surface antigen protein in the homogenate with a protein-aggregating reagent to form a precipitate which contains hepatitis B surface antigen protein; (iii) dissolving the precipitate in a buffer to form a suspension; and (iv) post-homogenizing the suspension to obtain a 10% to 50% increase in yield of the hepatitis B surface antigen protein as calculated based on a yield achieved without performing the post-homogenizing step.
摘要:
This invention provides a continuous bioconversion process in which a cross-flow membrane filtration zone is employed to recover a whole cell-containing retentate stream and a cell-free bioconversion product-containing permeate stream. The retentate stream is recycled to the fermentation zone. In a specific embodiment, toluene is bio-oxidized to muconic acid with a microorganism such as Pseudomonas putida Biotype A strain ATCC 31,916. The muconic acid is recovered as a precipitate from the cell-free permeate fermentation broth, and the fermentation broth is recycled in the process.
摘要:
The present invention is directed to a process for producing frenolicin B. The process comprises fermenting a broth so as to produce frenolicin, said broth having a microorganism capable of producing frenolicin. The frenolicin is then converted in the broth under anaerobic conditions to deoxyfrenolicin. The deoxyfrenolicin is converted to frenolicin B.
摘要:
This invention provides a semi-continuous fermentation process which is operated in a repeated fed-batch mode to maintain cell bioconversion productivity at a high level without product inhibition of enzymatic activity. The process is illustrated by the bioconversion of toluene or catechol via the ortho pathway to muconic acid which accumulates in the fermentation medium in a quantity up to about 50 grams per liter.