Abstract:
The present invention relates to a column A/D converter, column A/D conversion method, imaging device, and camera system that can reduce the amount of IR drop by dispersing the current consumed during the count operation, mitigate the counter characteristic degradation, readily reduce the amount of fluctuation in the power source voltage, and achieve operation at a low power source voltage. The column A/D converter includes a plurality of column processing units including an A/D conversion function, a plurality of counters configured to generate digital codes in response to a reference clock and arranged corresponding to each or a set of the column processing units, and a count start offset unit configured to trigger a pseudo count operation in each of the counters and to offset a count start code for at least two or more counters among the plurality of counters before the reference clock is supplied to the counters.
Abstract:
The present disclosure relates to a solid state image sensor and an electronic apparatus capable of performing a gain transition at high speed. A ramp generation circuit includes sample hold circuits and ramp generation DACs, the number of which depends on kinds of required gains (for example, two kinds, i.e. a low gain and a high gain). Then, the two sample hold circuits can individually hold gain DAC output voltages at the different gains. This enables a switch to the ramp generation DAC holding the required gain voltage by means of a ramp selection signal. The present disclosure can be applied, for example, to a CMOS solid state image sensor that is used for an imaging device.
Abstract:
A counter configured to perform counting at both edges of an input clock to output an additional value or a subtraction value for a previous count value and a next count value includes a first latch circuit that latches the input clock, a second latch circuit that latches an output from the first latch circuit, a holding section that holds data of the 0th bit of a count value, and a correction section that performs count correction on data of the first and subsequent bits of the count value on the basis of an output of the second latch circuit.
Abstract:
A counter configured to perform counting at both edges of an input clock to output an additional value or a subtraction value for a previous count value and a next count value includes a first latch circuit that latches the input clock, a second latch circuit that latches an output from the first latch circuit, a holding section that holds data of the 0th bit of a count value, and a correction section that performs count correction on data of the first and subsequent bits of the count value on the basis of an output of the second latch circuit.
Abstract:
A counter configured to perform counting at both edges of an input clock to output an additional value or a subtraction value for a previous count value and a next count value includes a first latch circuit that latches the input clock, a second latch circuit that latches an output from the first latch circuit, a holding section that holds data of the 0th bit of a count value, and a correction section that performs count correction on data of the first and subsequent bits of the count value on the basis of an output of the second latch circuit.
Abstract:
The present invention relates to a column A/D converter, column A/D conversion method, imaging device, and camera system that can reduce the amount of IR drop by dispersing the current consumed during the count operation, mitigate the counter characteristic degradation, readily reduce the amount of fluctuation in the power source voltage, and achieve operation at a low power source voltage. The column A/D converter includes a plurality of column processing units including an A/D conversion function, a plurality of counters configured to generate digital codes in response to a reference clock and arranged corresponding to each or a set of the column processing units, and a count start offset unit configured to trigger a pseudo count operation in each of the counters and to offset a count start code for at least two or more counters among the plurality of counters before the reference clock is supplied to the counters.
Abstract:
An A/D conversion circuit in which a counter is made to be capable of performing counting at both edges of a clock, up/down count values can be switched while the up/down count values are held, and the duty of the counting operation is difficult to be distorted even with the both-edge counting, a solid-state image sensor, and a camera system.
Abstract:
An A/D conversion circuit in which a counter is made to be capable of performing counting at both edges of a clock, up/down count values can be switched while the up/down count values are held, and the duty of the counting operation is difficult to be distorted even with the both-edge counting, a solid-state image sensor, and a camera system.
Abstract:
A solid-state imaging device having an analog-digital converter, and an analog-digital conversion method are described herein. An example of a solid-state imaging device comprises a bit inconsistency prevention section configured to prevent bit inconsistency between output of a low-level bit latch section and a high-level bit counting section.
Abstract:
A solid-state imaging device having an analog-digital converter, and an analog-digital conversion method are described herein. An example of a solid-state imaging device comprises a bit inconsistency prevention section configured to prevent bit inconsistency between output of a low-level bit latch section and a high-level bit counting section.