摘要:
A reflector structure suitable for extreme ultraviolet lithography (EUVL) is provided. The structure comprises a substrate having a multi-layer reflector. A capping layer is formed over the multi-layer reflector to prevent oxidation. In an embodiment, the capping layer is formed of an inert oxide, such as Al2O3, HfO2, ZrO2, Ta2O5, Y2O3-stabilized ZrO2, or the like. The capping layer may be formed by reactive sputtering in an oxygen environment, by non-reactive sputtering wherein the materials are sputtered directly from the respective oxide targets, by non-reactive sputtering of the metallic layer followed by full or partial oxidation (e.g., by natural oxidation, by oxidation in oxygen-containing plasmas, by oxidation in ozone (O3), or the like), by atomic level deposition (e.g., ALCVD), or the like.
摘要翻译:提供了适用于极紫外光刻(EUVL)的反射器结构。 该结构包括具有多层反射器的基板。 在多层反射器上形成覆盖层以防止氧化。 在一个实施方案中,封盖层由惰性氧化物如Al 2 O 3,HfO 2,ZrO 2,Ta 2 O 5,Y 2 O 3稳定的ZrO 2等形成。 覆盖层可以通过在氧环境中的反应溅射,通过非反应性溅射形成,其中材料直接从相应的氧化物靶溅射,通过金属层的非反应性溅射,然后进行全部或部分氧化(例如,通过 通过在含氧等离子体中氧化,通过氧化在臭氧(O3)等中),通过原子级沉积(例如,ALCVD)等进行自然氧化。
摘要:
Reticle stages for lithography systems and lithography methods are disclosed. In a preferred embodiment, a lithography reticle stage includes a first region adapted to support a first reticle, and at least one second region adapted to support a second reticle.
摘要:
A magnetoresistive semiconductor memory device is proposed, in which a magnetic field can be applied to memory cells by means of a magnetic field applying device such that a desired magnetization can be impressed on hard-magnetic layers of the memory cells acted on.
摘要:
A reflection mask has a multilayer reflection layer for the reflection of radiated-in radiation by constructive interference of the reflected partial beams and a multilayer layer, whose periodicity effects a destructive interference of the reflected partial beams and which performs the function of an absorber. One of the two multilayer layers is patterned in accordance with a structure to be imaged.
摘要:
Reticle stages for lithography systems and lithography methods are disclosed. In a preferred embodiment, a lithography reticle stage includes a first region adapted to support a first reticle, and at least one second region adapted to support a second reticle.
摘要:
A method for providing a vacuum isolated environment in a lithography system is disclosed. The method for dechucking a reticle includes providing a mask chamber having one or more vacuum valves for isolating the mask chamber from the lithography system. The one or more vacuum valves are closed to isolate the mask chamber from the rest of the lithography system. After the mask chamber is isolated, an inert gas is provided to the mask chamber to dechuck the reticle.
摘要:
An EUV Lithography mask, a fabrication method, and use method thereof is provided. A preferred embodiment comprises a substrate, a Bragg reflector disposed upon the substrate, a buffer disposed upon the Bragg reflector, and an absorber layer disposed upon the buffer. The materials in the mask have selected magnetic properties. In a preferred embodiment, the buffer is a hard magnetic material, and the absorber is a soft magnetic material. Another preferred embodiment includes a mask manufacturing method further including a mask step. In a preferred embodiment, an electron mirror microscope is used to inspect the mask by imaging its topography with respect to its magnetic properties in an applied magnetic field.
摘要:
Method for determining a mean radiation power P rad 0 _ of electromagnetic radiation of a radiation source, the radiation being intensity-modulated with modulation frequency ω0, in a predetermined time interval. The method provides a reflector designed to reflect electromagnetic radiation of the radiation source and electromagnetic radiation of a test radiation source, irradiates a predetermined area of the reflector with the source electromagnetic radiation, at least partially irradiates the predetermined area of the reflector with electromagnetic radiation of the test radiation source, measures a ω0-modulated power component Ptest,ω0(t) of a reflected test radiation power Ptest(t) of an electromagnetic radiation of the test radiation source, the radiation being reflected from the area, in the predetermined time interval, determines a mean value P test , ω 0 0 _ of the measured ω0-modulated power component Ptest,ω0(t) of the reflected test radiation power Ptest(t) in the predetermined time interval, and determines the mean radiation power P rad 0 _ from the relationship P rad 0 _ = a · P test , ω 0 0 _ , where a is a predetermined constant.
摘要:
A radiation-sensitive coating material, in addition to a base polymer, has a solvent and a radiation-active substance which forms an acid on irradiation by light (including energetic electrons or ions), a fluorescent substance which alters its fluorescence property subject to a change in the acid content of its surroundings. In a process for exposing a substrate coated with the coating material at least one sensor in the exposure chamber of the exposure apparatus measures the intensity of the change in fluorescence spectrum as a function of time during the exposure operation. From the course of intensity at the time of an individual line of the fluorescence spectrum or the intensity integrated over a wavelength interval it is possible to determine the endpoint of the exposure operation by way of electronic algorithms. Deviations from experimentally determined ideal curves of the intensity course provide information on erroneous functions in the course of coating material application and exposure.
摘要:
A reflector structure suitable for extreme ultraviolet lithography (EUVL) is provided. The structure comprises a substrate having a multi-layer reflector. A capping layer is formed over the multi-layer reflector to prevent oxidation. In an embodiment, the capping layer is formed of an inert oxide, such as Al2O3, HfO2, ZrO2, Ta2O5, Y2O3-stabilized ZrO2, or the like. The capping layer may be formed by reactive sputtering in an oxygen environment, by non-reactive sputtering wherein the materials are sputtered directly from the respective oxide targets, by non-reactive sputtering of the metallic layer followed by full or partial oxidation (e.g., by natural oxidation, by oxidation in oxygen-containing plasmas, by oxidation in ozone (O3), or the like), by atomic level deposition (e.g., ALCVD), or the like.