摘要:
An integrated semiconductor memory device includes at least one memory cell, at least one sense amplifier and a pair of bit lines connected to each sense amplifier, where each memory cell includes a selection transistor and a storage capacitor. The storage capacitor of each memory cell includes a first capacitor electrode and a second capacitor electrode, and the selection transistor of each memory cell includes a first source/drain region that is connected by a first contact connection to one bit line of a pair of bit lines corresponding with the memory cell, and a second source/drain region that is conductively connected to the first capacitor electrode of the storage capacitor of the memory cell. The second capacitor electrode of the storage capacitor of each memory cell is connected to the other bit line of the pair of bit lines corresponding with the memory cell.
摘要:
Semiconductor memories (1) have segmented word lines (5a, 5b), which in each case have a main word line (10a, 10b) made of a conductive metal and a plurality of interconnect segments (15a, 15b) coupled to the main word line (10a, 10b), which are coupled to the respective main word line (10a, 10b) in each case via at least one contact hole filling (11). If one of the contact hole fillings (11) is defective or at high resistance then functional errors of the semiconductor memory occur. The interconnect segments (15a, 15b) of two respective word lines (5a, 5b) can be short-circuited in pairs with the aid of switching units (20), whereby a static current (I) that flows via the contact hole fillings (11) can be used for electrically stressing the contact hole fillings (11). Electrical stressing of contact hole fillings of segmented word lines is thus made possible.
摘要:
An integrated semiconductor memory includes at least one word line and a number of memory cells. Each memory cell has a selection transistor coupled to the word line. A word line driver is coupled to the word line. The word line driver provides a first electrical potential or a second electrical potential to the word line such that the word line is activated by the first electrical potential and is deactivated by the second electrical potential. A passive component (e.g., a diode or a resistor) is coupled between the word line and the second electrical potential such that the word line is coupled to the second electrical potential in a high-resistance fashion through the passive component. The passive component is transmissive for a leakage current between the word line and the contact connection.
摘要:
An integrated semiconductor memory includes at least one word line and a number of memory cells. Each memory cell has a selection transistor coupled to the word line. A word line driver is coupled to the word line. The word line driver provides a first electrical potential or a second electrical potential to the word line such that the word line is activated by the first electrical potential and is deactivated by the second electrical potential. A passive component (e.g., a diode or a resistor) is coupled between the word line and the second electrical potential such that the word line is coupled to the second electrical potential in a high-resistance fashion through the passive component. The passive component is transmissive for a leakage current between the word line and the contact connection.
摘要:
An integrated semiconductor memory device includes a memory cell array (B1) with a first bit line and a second bit line (BL, /BL), a controllable resistor (SW) and a control unit (100) configured to control the controllable resistor. In a first operating state of the integrated semiconductor memory device, the first and second bit lines are connected to one another via a first controllable switch (ET1) and also via the controllable resistor (SW) which has been set to a low resistance, to a connection (A10) that applies a mid-voltage (VBLEQ), where the voltage level of the mid-voltage is in the form of an arithmetic mean between a first and second voltage potential (VBLH, VBLL). By virtue of the control unit briefly setting the controllable resistor to a very low resistance in the first operating state of the integrated semiconductor memory device, the period of time required for the first and second bit lines require to assume the mid-voltage (VBLEQ) is shortened. The influence of capacitive coupling influences, which slow down the charging of the first and second bit lines to the mid-voltage, is significantly reduced as a result.
摘要:
An integrated dynamic memory includes memory cells which are combined to form individual independently addressable units, and a control circuit for controlling a refresh mode for the memory cells. The memory cells can have their memory cell content refreshed. The control circuit is designed such that one or more units of memory cells can be subject to a refresh mode in parallel in a refresh cycle. The control circuit sets a number of memory cell units, which are to be refreshed in parallel in a refresh cycle based on a temperature reference value. A maximum possible operating temperature for a memory chip can be increased without additional restrictions on memory access.
摘要:
An integrated semiconductor memory including memory cells which can be driven via first and second word lines and can be replaced by redundant memory cells. In the first memory cell type, data can be stored corresponding to the data present at a data input terminal. In the memory cells of a second memory cell type, data can be stored inverted with respect to data present at the data input terminal. The integrated semiconductor memory includes a circuit for data inversion, wherein the data are written to a redundant memory cell, inverted with respect to the data present at the data input terminal if the defective memory cell and the redundant memory cell replacing it are situated in different word line strips of a bit line twist, and if the defective memory cell and the redundant memory cell replacing it are associated with different memory cell types.
摘要:
An integrated circuit includes an input terminal (IN) for application of a supply voltage (Vext) and an output terminal (A) for generation of an output voltage (Vout). A first branch including a first controllable resistance (T1) and a second branch including a charge pump (10) and a second controllable resistance (T2) are connected between the input terminal (IN) and the output terminal (A). A control circuit (20) alters the resistance values of the first and second controllable resistances (T1, T2) in a manner dependent on a ratio of an actual value (Vout) of the output voltage to a desired value (VSout) of the output voltage and a ratio of an actual value (Vext) of the supply voltage to a desired value (VSext) of the supply voltage. As a result, the output voltage (Vout) can be stabilized to the desired value (VSout) virtually independently of fluctuations of the supply voltage.
摘要:
An integrated memory has individually addressable normal and redundant units of memory cells. A memory unit is used to store, in a normal mode, an address for one of the normal units which needs to be replaced by one of the redundant units. A comparison unit compares an address which is present on an address bus with an address stored in the memory unit and activates one of the redundant units in the event of a match being identified. The memory also has a test circuit which can be activated by a test mode signal, can reset the memory unit to an initial state, and can store an address for one of the redundant units in the memory unit for subsequently writing an identification code to this redundant unit.
摘要:
A dynamic RAM semiconductor memory with a shared sense amplifier organization concept, in which the cell arrays are subdivided into blocks whose bit lines are connected in pairs from two adjacent blocks in each case to a common sense amplifier and the sense amplifiers are disposed between the cell blocks. In which case bit line switches are disposed in sense amplifier strips—lying between the blocks—between in each case two adjacent sense amplifiers in order to momentarily connect the other ends—not connected to the sense amplifiers—of two bit line pairs from the adjacent cell blocks during a precharge phase of a bit line pair activated directly beforehand. The precharge phase takes place at the start of a charge equalization phase.