Method and apparatus for suspending microparticles
    1.
    发明授权
    Method and apparatus for suspending microparticles 失效
    用于悬浮微粒的方法和装置

    公开(公告)号:US5532140A

    公开(公告)日:1996-07-02

    申请号:US216863

    申请日:1994-03-23

    CPC分类号: G01J3/4406 Y10T436/25875

    摘要: A device and method is described for joining two or more small particles to form a composite levitated particle. The size of the particles joined may be in the range 0.1 micrometer to 30 micrometers. The device utilizes a linear quadrupole electrodynamic levitator with storage rings at right angles to the levitating electrodes. The storage rings move the charged particles to desired positions with DC electric fields. Particles with different sign but unequal charge are then joined by means of displacements caused by the DC fields of the storage rings. The initial particles and the final composite particle are retained free of any contact with substrate in the levitating fields of the linear levitator.

    摘要翻译: 描述了用于连接两个或更多个小颗粒以形成复合悬浮颗粒的装置和方法。 接合的颗粒的尺寸可以在0.1微米至30微米的范围内。 该装置使用具有与悬浮电极成直角的存储环的线性四极杆电动悬浮器。 存储环将带电粒子移动到具有直流电场的所需位置。 然后通过由存储环的DC场引起的位移来连接具有不同符号但不相等电荷的颗粒。 初始粒子和最终复合粒子在线性漂浮器的悬浮场中保持与底物的任何接触。

    Method for using a static electric field to induce crystallization and to control crystal form
    3.
    发明申请
    Method for using a static electric field to induce crystallization and to control crystal form 失效
    使用静电场诱导结晶和控制晶体形式的方法

    公开(公告)号:US20050256300A1

    公开(公告)日:2005-11-17

    申请号:US11104714

    申请日:2005-04-13

    摘要: Applying a strong static DC electric field to supersaturated aqueous glycine solutions resulted in the nucleation of the γ polymorph attributed to the electric-field induced orientation of the highly polar glycine molecules in large preexisting solute clusters, helping them organize into a crystalline structure. A method to induce crystallization and to prepare polymorphs and/or morphologies of materials by using a static electric field to cause nucleation and crystal growth to occur in a supersaturated solution in such a way as to obtain a crystal structure that would not normally appear without the use of the static electric field. Aqueous glycine solutions were prepared by combining solid glycine and water. Supersaturated solutions were generated by heating the tubes to 62-64° C. and holding them at that temperature in an ultrasonicator overnight. Once the glycine was completely dissolved, the solutions were slowly cooled to room temperature. A chamber was constructed consisting of two brass electrodes separated by a 5 mm insulating gap, with a hole drilled down through the center, parallel to the gap-electrode interface, with a diameter large enough to accommodate the test tube. A DC voltage was applied across the electrodes, large enough to produce electric fields in the range of 400,000 to 800,000 V/m. Tests tubes containing the aged solutions were placed in the high-voltage chamber. Exposure of the aged solutions to fields of 600,000 V/m resulted in crystallization typically within 30-90 min. The onset of nucleation was observed visually by the formation of a needle-shaped crystallite.

    摘要翻译: 将强静态DC电场应用于过饱和甘氨酸水溶液导致伽马多晶型物的成核归因于大量预先存在的溶质簇中高极性甘氨酸分子的电场诱导取向,有助于它们组织成晶体结构。 通过使用静电场引起结晶并制备材料的多晶型物和/或形态的方法,以使得在过饱和溶液中发生成核和晶体生长,以获得通常不会出现的晶体结构 使用静电场。 通过将固体甘氨酸和水混合制备甘氨酸水溶液。 通过将管加热至62-64℃并将其在超声波隔离器中保持在该温度下来产生过饱和溶液。 一旦甘氨酸完全溶解,将溶液缓慢冷却至室温。 由两个黄铜电极构成的腔体由两个黄铜电极隔开,绝缘间隔为5mm,孔穿过中心平行于间隙 - 电极界面钻出,直径足够大以容纳试管。 在电极之间施加直流电压,其足够大以产生在400,000至800,000V / m的范围内的电场。 将含有老化溶液的试管置于高压室中。 将老化溶液暴露于600,000V / m的场中,结晶通常在30-90分钟内。 通过形成针状微晶目测观察成核的开始。

    Lactam polymer derivatives
    6.
    发明申请
    Lactam polymer derivatives 有权
    内酰胺聚合物衍生物

    公开(公告)号:US20060069235A1

    公开(公告)日:2006-03-30

    申请号:US10955214

    申请日:2004-09-30

    IPC分类号: C08G63/08

    摘要: Lactam polymers has been modified with sodium borohydride (NaBH4) to yield lactam polymers bearing hydroxyl functional groups. These functional groups are useful for the covalent attachment of reactive groups, fluorescent probes, antimicrobial agents, bioactive factors, and drugs. The resulting as components for medical devices, specifically ophthalmic devices and more specifically contact lenses. Hydrogels based on these polymers are also useful for biomedical applications in the areas of drug delivery, tissue engineering, and implantable devices.

    摘要翻译: 内酰胺聚合物已经用硼氢化钠(NaBH 4 H 4)进行了改性,得到含有羟基官能团的内酰胺聚合物。 这些官能团可用于共价连接反应性基团,荧光探针,抗微生物剂,生物活性因子和药物。 作为医疗装置的组件,特别是眼科装置,更具体地说是隐形眼镜。 基于这些聚合物的水凝胶也可用于药物递送,组织工程和可植入装置领域的生物医学应用。

    PLASMONIC ENHANCEMENT OF WHISPERING GALLERY MODE BIOSENSORS
    8.
    发明申请
    PLASMONIC ENHANCEMENT OF WHISPERING GALLERY MODE BIOSENSORS 有权
    通过画廊模式生物传感器的等离子体增强

    公开(公告)号:US20120069331A1

    公开(公告)日:2012-03-22

    申请号:US13205756

    申请日:2011-08-09

    IPC分类号: G01J3/44 G01N21/55

    CPC分类号: G01N21/554 G01N21/7746

    摘要: A sensor for determining the presence or concentration of a target entity in a medium is described, and includes (a) an optical waveguide; (b) a microresonator optically coupled with the optical waveguide such that light within the optical waveguide induces a resonant mode within the microresonator at an equator region (or a mode volume); and (c) at least one plasmonic nanoparticle adsorbed onto a surface area of the microresonator within the equator region (or the mode volume) such that light inducing a resonant mode within the microresonator also causes a plasmonic resonance in the at least one plasmonic nanoparticle. Detection methods for using such sensors are also described. Finally, methods, involving the use of carousel forces, for fabricating such sensors are also described.

    摘要翻译: 描述了用于确定介质中目标实体的存在或集中的传感器,并且包括(a)光波导; (b)与所述光波导光学耦合的微谐振器,使得所述光波导内的光在赤道区域(或模式体积)下在微谐振器内引起谐振模式; 和(c)至少一种等离子体激元纳米粒子吸附在赤道区域内的微谐振器的表面区域(或模式体积)上,使得在微谐振器内产生共振模式的光也导致至少一种等离子体激元纳米粒子中的等离子体共振。 还描述了使用这种传感器的检测方法。 最后,还描述了涉及使用转盘力的方法来制造这种传感器。

    Method for using a static electric field to induce crystallization and to control crystal form
    9.
    发明授权
    Method for using a static electric field to induce crystallization and to control crystal form 失效
    使用静电场诱导结晶和控制晶体形式的方法

    公开(公告)号:US07879115B2

    公开(公告)日:2011-02-01

    申请号:US11104714

    申请日:2005-04-13

    IPC分类号: B01D9/02

    摘要: Applying a strong static DC electric field to supersaturated aqueous glycine solutions resulted in the nucleation of the γ polymorph attributed to the electric-field induced orientation of the highly polar glycine molecules in large preexisting solute clusters, helping them organize into a crystalline structure. A method to induce crystallization and to prepare polymorphs and/or morphologies of materials by using a static electric field to cause nucleation and crystal growth to occur in a supersaturated solution in such a way as to obtain a crystal structure that would not normally appear without the use of the static electric field. Aqueous glycine solutions were prepared by combining solid glycine and water. Supersaturated solutions were generated by heating the tubes to 62-64° C. and holding them at that temperature in an ultrasonicator overnight. Once the glycine was completely dissolved, the solutions were slowly cooled to room temperature. A chamber was constructed consisting of two brass electrodes separated by a 5 mm insulating gap, with a hole drilled down through the center, parallel to the gap-electrode interface, with a diameter large enough to accommodate the test tube. A DC voltage was applied across the electrodes, large enough to produce electric fields in the range of 400,000 to 800,000 V/m. Tests tubes containing the aged solutions were placed in the high-voltage chamber. Exposure of the aged solutions to fields of 600,000 V/m resulted in crystallization typically within 30-90 min. The onset of nucleation was observed visually by the formation of a needle-shaped crystallite.

    摘要翻译: 将强静态DC电场应用于过饱和甘氨酸水溶液,导致γ大多数晶核的成核归因于大容量预先存在的溶质簇中高极性甘氨酸分子的电场诱导取向,有助于它们组织成晶体结构。 通过使用静电场引起结晶并制备材料的多晶型物和/或形态的方法,以使得在过饱和溶液中发生成核和晶体生长,以获得通常不会出现的晶体结构 使用静电场。 通过将固体甘氨酸和水混合制备甘氨酸水溶液。 通过将管加热至62-64℃并将其在超声波隔离器中保持在该温度下来产生过饱和溶液。 一旦甘氨酸完全溶解,将溶液缓慢冷却至室温。 由两个黄铜电极构成的腔体由两个黄铜电极隔开,绝缘间隔为5mm,孔穿过中心平行于间隙 - 电极界面钻出,直径足够大以容纳试管。 在电极之间施加直流电压,其足够大以产生在400,000至800,000V / m的范围内的电场。 将含有老化溶液的试管置于高压室中。 将老化溶液暴露于600,000V / m的场中,结晶通常在30-90分钟内。 通过形成针状微晶目测观察成核的开始。

    DNA or RNA detection and/or quantification using spectroscopic shifts or two or more optical cavities
    10.
    发明申请
    DNA or RNA detection and/or quantification using spectroscopic shifts or two or more optical cavities 审中-公开
    DNA或RNA检测和/或使用光谱偏移或两个或更多个光学腔的定量

    公开(公告)号:US20090093375A1

    公开(公告)日:2009-04-09

    申请号:US10768977

    申请日:2004-01-30

    IPC分类号: C40B30/10 C40B60/12

    摘要: A spectroscopic technique for high-sensitivity, label free DNA quantification uses a shift in an optical resonance (whispering gallery mode, WGM) excited in a micron-sized optical cavity (e.g., a silica sphere) to detect and measure nucleic acids. The surface of the silica sphere is chemically modified with oligonucleotides. Hybridization to the target DNA leads to a red-shift of the optical resonance wavelength. The sensitivity of this resonance technique is higher than most optical single-pass devices such as surface plasmon resonance biosensors. Each microsphere can be identified by its unique resonance wavelength. Specific, multiplexed DNA detection may be provided by using two or more microspheres. The multiplexed signal from two or more microspheres illustrates that a single nucleotide mismatch in an 11-mer oligonucleotide can be discriminated with a high signal-to-noise of 54. This all-photonic WGM biosensor can be integrated on a chip, such as a semiconductor chip, which makes it an easy to manufacture, analytic component for a portable, robust lab-on-a-chip device.

    摘要翻译: 用于高灵敏度,无标记DNA定量的光谱技术使用在微米尺寸的光学腔(例如,二氧化硅球体)中激发的光学共振(耳语画廊模式,WGM)中的移动来检测和测量核酸。 二氧化硅球体的表面用寡核苷酸进行化学修饰。 与目标DNA的杂交导致光学共振波长的红移。 这种共振技术的灵敏度高于大多数光学单通道器件,如表面等离子体共振生物传感器。 每个微球可以通过其独特的共振波长来识别。 可以通过使用两个或更多个微球来提供特异性的多重DNA检测。 来自两个或更多个微球的多路复用信号表明,11聚体寡核苷酸中的单核苷酸不匹配可以用54的高信噪比来鉴别。该全光子WGM生物传感器可以集成在芯片上,例如 半导体芯片,使其成为易于制造的便携式,强大的实验室芯片设备的分析组件。