摘要:
One embodiment is a microprobe. An example of the microprobe comprises a housing having an aperture. This example of the microprobe also comprises an ISFET attached to the housing. The ISFET may have a gate located proximate the aperture. This example of the microprobe further comprises a reference electrode attached to the housing proximate the aperture. Another embodiment is a microsensor system. Another embodiment is a method for measuring a characteristic of tissue. Yet another condition embodiment is a method for monitoring tissue pH.
摘要:
A microsensor array system, comprising a pad, a plurality of actuators attached to the pad, and a plurality of microprobes, wherein substantially each microprobe in the plurality of microprobes is attached to a respective actuator in the plurality of actuators.
摘要:
One embodiment is a microprobe. An example of the microprobe comprises a housing having an aperture. This example of the microprobe also comprises an ISFET attached to the housing. The ISFET may have a gate located proximate the aperture. This example of the microprobe further comprises a reference electrode attached to the housing proximate the aperture. Another embodiment is a microsensor system. Another embodiment is a method for measuring a characteristic of tissue. Yet another embodiment is a method for monitoring tissue pH.
摘要:
A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.
摘要:
A nanophotonic device. The device includes a substrate, at least one light emitting structure and at least one electronic component. The at least one light emitting structure is capable of transmitting light and is monolithically integrated on the substrate. The at least one electronic component is monolithically integrated on the substrate. A method for fabricating nanophotonic devices is also described.
摘要:
A method for the fabrication of active semiconductor and high-temperature perconducting devices on the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.
摘要:
A single crystal silicon film nanostructure capable of optical emission is laterally disposed on an insulating transparent substrate of sapphire. By laterally disposing the nanostructure, adequate support for the structure is provided, and the option of fabricating efficient electrical contact structures to the nanostructure is made possible. The method of the invention begins with the deposition of ultrathin layers of silicon on the substrate. A Solid Phase Epitaxy improvement process is then used to remove crystalline defects formed during the deposition. The silicon is then annealed and thinned using thermal oxidation steps to reduce its thickness to be on the order of five nanometers in height. The width and length of the nanostructure are defined by lithography. The nanometer dimensioned silicon is then spin-coated with a resist with width and length definition in the resist being performed by way of electron beam exposure. The photoresist is developed and the e-beam written pattern is transferred to the silicon by etching. Oxidations and etchings may subsequently be employed to further thin the width of the nanostructure to be on the order of two to three nanometers. The single crystal, silicon-based nanostructures can be made an integral part of silicon-based photo, electroluminescent, and quantum-effect devices all of which are compatible with current silicon manufacturing techniques and with other silicon-based microelectronics.
摘要:
A single crystal silicon film nanostructure capable of optical emission isaterally disposed on an insulating transparent substrate of sapphire. By laterally disposing the nanostructure, adequate support for the structure is provided, and the option of fabricating efficient electrical contact structures to the nanostructure is made possible. The method of the invention begins with the deposition of ultrathin layers of silicon on the substrate. A Solid Phase Epitaxy improvement process is then used to remove crystalline defects formed during the deposition. The silicon is then annealed and thinned using thermal oxidation steps to reduce its thickness to be on the order of five nanometers in height. The width and length of the nanostructure are defined by lithography. The nanometer dimensioned silicon is then spin-coated with a resist with width and length definition in the resist being performed by way of electron beam exposure. The photoresist is developed and the e-beam written pattern is transferred to the silicon by etching. Oxidations and etchings may subsequently be employed to further thin the width of the nanostructure to be on the order of two to three nanometers. The single crystal, silicon-based nanostructures can be made an integral part of silicon-based photo, electroluminescent, and quantum-effect devices all of which are compatible with current silicon manufacturing techniques and with other silicon-based microelectronics.
摘要:
A method for manufacture of a nanophotonic device can include the step of operatively coupling a planar light source and a photodetector with an optical waveguide. The planar light source, photodetector and optical waveguide can then be monolithically integrated in direct contact with a sapphire substrate, along with an electronic component that is also in direct contact with the sapphire substrate.
摘要:
A light emitting photonic structure has a transparent substrate, such as sapphire, supporting a layer of group IV semiconductor material, such as silicon, having at least one porous region from which light is emitted as a response to an electrical or optical stimulus. Optionally, the group IV semiconductor material may be germanium, carbon, tin, silicon-germanium, silicon carbide, single crystal structures, polycrystalline structures, or amorphous structures and the transparent substrate may be glass, quartz, fused silica, diamond, ruby, yttria alumina garnet, yttria stabilized zirconium, magnesium fluoride or magnesium oxide. When the stimulus is electrical, the response is electroluminescence or cathodoluminescence and when the stimulus is optical, the response is photoluminescence. The method includes providing a transparent substrate, forming a layer of a group IV semiconductor material on the transparent substrate, and fabricating at least one region in the layer of the group IV semiconductor material from which light is emitted as a response to a electro- or photo-stimulus. The fabricating of the region is by a photochemical etch by an etching solution and a means to catalyze an etching reaction and may further include an illuminating of the region with light or an other suitable wavelength to provide for a photo-initiated photo-chemical stain etch of the region.