摘要:
This invention provides a membrane-mediated electropolishing apparatus for polishing and/or planarizing metal work-pieces. The work-piece is wetted with a low-conductivity fluid. The wetted work-piece is contacted with a first side of a charge-selective ion-conducting membrane, wherein the second side contacts a conductive electrolyte solution in electrical contact with a electrode. Current flow between the electrode and the work-piece electropolishes metal from the work-piece. This invention also provides a half-cell adapted for use in membrane-mediated electropolishing having a fully or partially enclosed volume, a conductive electrolyte which partially or essentially fills the enclosed volume, an electrode which is in contact with the electrolyte, and a charge-selective ion-conducting membrane which seals one surface of the enclosed volume, cavity or vessel in such a way that the internal surface of said membrane contacts the electrolyte solution or gel and the external surface is accessible to contact the work-piece.
摘要:
This invention provides a membrane-mediated electropolishing process for polishing and/or planarizing metal work pieces. The work piece is wetted with a low-conductivity fluid. The wetted work piece is contacted with a first side of a charge-selective ion-conducting membrane, wherein the second side contacts a conductive electrolyte solution in electrical contact with a cathode. Current flow between the cathode and the work piece electropolishes metal from the work piece. This process can be used for both pure metals and alloys, and provides several significant advantages over conventional electropolishing processes. This invention also provides an apparatus useful in the membrane-mediated electropolishing process.
摘要:
This invention provides membrane-mediated electropolishing (MMEP) processes for polishing and/or planarizing metal work pieces using topographically patterned membranes. The processes can be used for both pure metals and alloys, and provide advantages over conventional electropolishing processes and known MMEP processes using smooth membranes. This invention also provides a cathode half-cell and an apparatus useful in membrane-mediated electropolishing processes. The invention also provides processes for electroengraving and electromachining topographic patterns, holes and/or grooves into the surface of a metal work piece.
摘要:
A method for reducing the self discharge rate and the variability in the self discharge rate of an electrochemical cell, wherein a porous separator is inserted between a cathode and an anode of the cell and the porous separator contains a nanoweb that comprises a plurality of nanofibers that may contain a fully aromatic polyimide and the fully aromatic polyimide has a degree of imidization of greater than 0.51 where degree of imidization is the ratio of the height of the imide C—N absorbance at 1375 cm−1 to the C—H absorbance at 1500 cm−1.
摘要:
This invention provides an electrochemical cell comprising a housing having disposed therewithin, an electrolyte, and a multi-layer article at least partially immersed in the electrolyte; the multi-layer article comprising a first metallic current collector, a first electrode material in electrically conductive contact with the first metallic current collector, a second electrode material in ionically conductive contact with the first electrode material, a porous separator disposed between and contacting the first electrode material and the second electrode material; and, a second metallic current collector in electrically conductive contact with the second electrode material, wherein the porous separator comprises a nanoweb consisting essentially of a plurality of nanofibers of a fully aromatic polyimide. Also provided is a process for preparing the multi-layer article. Further provided is an electrochemical cell wherein the separator is a polyimide nanoweb with enhanced properties.
摘要:
A method for reducing the self discharge rate and the variability in the self discharge rate of an electrochemical cell wherein a porous separator is inserted between a cathode and an anode of the cell and the porous separator contains a nanoweb that comprises a plurality of nanofibers that may contain a fully aromatic polyimide and the fully aromatic polyimide has a degree of imidization of greater than 0.51 where degree of imidization is the ratio of the height of the imide C—N absorbance at 1375 cm−1 to the C—H absorbance at 1500 cm−1.
摘要:
A method for reducing the self discharge rate and the variability in the self discharge rate of an electrochemical cell.wherein a porous separator is inserted between a cathode and an anode of the cell and the porous separator contains a nanoweb that comprises a plurality of nanofibers that may contain a fully aromatic polyimide and the fully aromatic polyimide has a degree of imidization of greater than 0.51 where degree of imidization is the ratio of the height of the imide C—N absorbance at 1375 cm−1 to the C—H absorbance at 1500 cm−1.
摘要:
This invention provides a multi-layer article comprising a first electrode material, a second electrode material, and a porous separator disposed between and in contact with the first and the second electrode materials, wherein the porous separator comprises a nanoweb consisting essentially of a plurality of nanofibers of a fully aromatic polyimide. Also provided is a method for preparing the multi-layer article, and an electrochemical cell employing the same. A multi-layer article comprising a polyimide nanoweb with enhanced properties is also provided.
摘要:
The present disclosure relates to a dielectric composition having a resin and a filler. The filler is used to raise the dielectric and has a passivating surface coating thereon.
摘要:
This invention relates to processes and apparati for selectively electroplating a metal layer or layers into recessed topographic features on a conductive surface. The processes and apparati of the invention are useful for fabricating metal circuit patterns, for example for creating copper interconnects between integrated circuit elements embedded in a thin layer of dielectric material on the surface of a semiconductor wafer.