摘要:
An interactive table has a display surface on which a physical object is disposed. A camera within the interactive table responds to infrared (IR) light reflected from the physical object enabling a location of the physical object on the display surface to be determined, so that the physical object appear part of a virtual environment displayed thereon. The physical object can be passive or active. An active object performs an active function, e.g., it can be self-propelled to move about on the display surface, or emit light or sound, or vibrate. The active object can be controlled by a user or the processor. The interactive table can project an image through a physical object on the display surface so the image appears part of the object. A virtual entity is preferably displayed at a position (and a size) to avoid visually interference with any physical object on the display surface.
摘要:
An object placed on an interactive display surface is detected and its position and orientation are determined in response to IR light that is reflected from an encoded marking on the object. Upon detecting the object on an interactive display surface, a software program produces a virtual entity or image visible through the object to perform a predefined function. For example, the object may appear to magnify text visible through the object, or to translate a word or phrase from one language to another, so that the translated word or phrase is visible through the object. When the object is moved, the virtual entity or image that is visible through the object may move with it, or can control the function being performed. A plurality of such objects can each display a portion of an image, and when correctly positioned, together will display the entire image, like a jigsaw puzzle.
摘要:
A sensor manager provides dynamic input fusion using thermal imaging to identify and segment a region of interest. Thermal overlay is used to focus heterogeneous sensors on regions of interest according to optimal sensor ranges and to reduce ambiguity of objects of interest. In one implementation, a thermal imaging sensor locates a region of interest that includes an object of interest within predetermined wavelengths. Based on the thermal imaging sensor input, the regions each of the plurality of sensors are focused on and the parameters each sensor employs to capture data from a region of interest are dynamically adjusted. The thermal imaging sensor input may be used during data pre-processing to dynamically eliminate or reduce unnecessary data and to dynamically focus data processing on sensor input corresponding to a region of interest.
摘要:
A “Contact Discriminator” provides various techniques for differentiating between valid and invalid contacts received from any input methodology by one or more touch-sensitive surfaces of a touch-sensitive computing device. Examples of contacts include single, sequential, concurrent, or simultaneous user finger touches (including gesture type touches), pen or stylus touches or inputs, hover-type inputs, or any combination thereof. The Contact Discriminator then acts on valid contacts (i.e., contacts intended as inputs) while rejecting or ignoring invalid contacts or inputs. Advantageously, the Contact Discriminator is further capable of disabling or ignoring regions of input surfaces, such tablet touch screens, that are expected to receive unintentional contacts, or intentional contacts not intended as inputs, for device or application control purposes. Examples of contacts not intended as inputs include, but are not limited to, a user's palm resting on a touch screen while the user writes on that screen with a stylus or pen.
摘要:
Various embodiments are disclosed that relate to the presentation of video images in a presentation space via a head-mounted display. For example, one disclosed embodiment comprises receiving viewer location data and orientation data from a location and orientation sensing system, and from the viewer location data and the viewer orientation data, locate a viewer in a presentation space, determine a direction in which the user is facing, and determine an orientation of the head-mounted display system. From the determined location, direction, and orientation, a presentation image is determined based upon a portion of and an orientation of a volumetric image mapped to the portion of the presentation space that is within the viewer's field of view. The presentation image is then sent to the head-mounted display.
摘要:
A node device in a distributed virtual environment captures locational signals projected by another node device into a capture area of the node device and reflected from the capture area to a capture device of the node device. The location of the node device relative to the other node device is determined based on the captured locational signals. The determined location can be based on an angular relationship determined between the node device and the other node device based on the captured locational signals. The determined location can also be based on a relative distance determined between the node device and the other node device based on the captured locational signals. Topology of the capture area can also be detected by the node device, and topologies of multiple capture areas can be combined to define one or more surfaces in a virtual environment.
摘要:
A method for constructing a 3D representation of a subject comprises capturing, with a camera, a 2D image of the subject. The method further comprises scanning a modulated illumination beam over the subject to illuminate, one at a time, a plurality of target regions of the subject, and measuring a modulation aspect of light from the illumination beam reflected from each of the target regions. A moving-mirror beam scanner is used to scan the illumination beam, and a photodetector is used to measure the modulation aspect. The method further comprises computing a depth aspect based on the modulation aspect measured for each of the target regions, and associating the depth aspect with a corresponding pixel of the 2D image.
摘要:
Embodiments are disclosed that relate to hover detection in interactive display devices. One embodiment provides an interactive display device comprising a display panel configured to display an image on an interactive surface, an imaging optical wedge disposed adjacent to the display panel, an image sensor configured to capture an image of an object located in front of the interactive surface and spaced from the interactive surface by capturing the image through the imaging optical wedge, a logic subsystem, and a data-holding subsystem comprising instructions executable by the logic subsystem to operate the display panel and the image sensor, and to detect a hover input based upon one or more images received from the image sensor.
摘要:
A user notification system and a computer input device, such as a mouse. The computer input device includes an illumination member that enables a user to quickly and accurately position the input device during poor lighting conditions and determine whether the computer is ON. The input device includes a housing and an illumination device that is supported by the housing. Illumination from the illumination device is visible when the input device is placed on a support surface. The illumination member is also used to notify the user if one or more of various events have occurred in a computer application being run on the computer. The notification information is presented to the user by changing the state of the illumination member. An example of event for notification includes the receipt of a message in a communications program such as an e-mail message. The notification can make the illumination member blink as a function of the number of messages received. This enables information to be conveyed to the user without the need for text or audio, and without the need to view the computer monitor.
摘要:
Described is using a combination of which a multi-view display is provided by a combining spatial multiplexing (e.g., using a parallax barrier or lenslet), and temporal multiplexing (e.g., using a directed backlight). A scheduling algorithm generates different views by determining which light sources are illuminated at a particular time. Via the temporal multiplexing, different views may be in the same spatial viewing angle (spatial zone). Two of the views may correspond to two eyes of a person, with different video data sent to each eye to provide an autostereoscopic display for that person. Eye (head) tracking may be used to move the view or views with a person as that person moves.