摘要:
A monolithically integrated field effect transistor and Schottky diode includes gate trenches extending into a semiconductor region. Source regions having a substantially triangular shape flank each side of the gate trenches. A contact opening extends into the semiconductor region between adjacent gate trenches. A conductor layer fills the contact opening to electrically contact: (a) the source regions along at least a portion of a slanted sidewall of each source region, and (b) the semiconductor region along a bottom portion of the contact opening, wherein the conductor layer forms a Schottky contact with the semiconductor region.
摘要:
A method of forming a charge balance MOSFET includes the following steps. A substrate with an overlying epitaxial layer both of a first conductivity type, are provided. A gate trench extending through the epitaxial layer and terminating within the substrate is formed. A shield dielectric lining sidewalls and bottom surface of the gate trench is formed. A shield electrode is formed in the gate trench. A gate dielectric layer is formed along upper sidewalls of the gate trench. A gate electrode is formed in the gate trench such that the gate electrode extends over but is insulated from the shield electrode. A deep dimple extending through the epitaxial layer and terminating within the substrate is formed such that the deep dimple is laterally spaced from the gate trench. The deep dimple is filled with silicon material of the second conductivity type.
摘要:
A field effect transistor is formed as follows. A semiconductor region of a first conductivity type with an epitaxial layer of a second conductivity extending over the semiconductor region is provided. A trench extending through the epitaxial layer and terminating in the semiconductor region is formed. A two-pass angled implant of dopants of the first conductivity type is carried out to thereby form a region of first conductivity type along the trench sidewalls. A threshold voltage adjust implant of dopants of the second conductivity type is carried out to thereby convert a conductivity type of a portion of the region of first conductivity type extending along upper sidewalls of the trench to the second conductivity type. Source regions of the first conductivity type flanking each side of the trench are formed.
摘要:
An electrostatic discharge (ESD) protection network for power MOSFETs includes parallel branches, containing polysilicon zener diodes and resistors, used for protecting the gate from rupture caused by high voltages caused by ESD. The branches may have the same or independent paths for voltage to travel across from the gate region into the semiconductor substrate. Specifically, the secondary branch has a higher breakdown voltage than the primary branch so that the voltage is shared across the two branches of the protection network. The ESD protection network of the device provides a more effective design without increasing the space used on the die. The ESD protection network can also be used with other active and passive devices such as thyristors, insulated-gate bipolar transistors, and bipolar junction transistors.
摘要:
In accordance with an embodiment a structure can include a monolithically integrated trench field-effect transistor (FET) and Schottky diode. The structure can include a first gate trench extending into a semiconductor region, a second gate trench extending into the semiconductor region, and a source region flanking a side of the first gate trench. The source region can have a substantially triangular shape, and a contact opening extending into the semiconductor region between the first gate trench and the second gate trench. The structure can include a conductor layer disposed in the contact opening to electrically contact the source region along at least a portion of a slanted sidewall of the source region, and the semiconductor region along a bottom portion of the contact opening. The conductor layer can form a Schottky contact with the semiconductor region.
摘要:
In accordance with an embodiment a structure can include a monolithically integrated trench field-effect transistor (FET) and Schottky diode. The structure can include a first gate trench extending into a semiconductor region, a second gate trench extending into the semiconductor region, and a source region flanking a side of the first gate trench. The source region can have a substantially triangular shape, and a contact opening extending into the semiconductor region between the first gate trench and the second gate trench. The structure can include a conductor layer disposed in the contact opening to electrically contact the source region along at least a portion of a slanted sidewall of the source region, and the semiconductor region along a bottom portion of the contact opening. The conductor layer can form a Schottky contact with the semiconductor region.
摘要:
A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches includes a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.
摘要:
A monolithically integrated field effect transistor and Schottky diode includes gate trenches extending into a semiconductor region. Source regions having a substantially triangular shape flank each side of the gate trenches. A contact opening extends into the semiconductor region between adjacent gate trenches. A conductor layer fills the contact opening to electrically contact: (a) the source regions along at least a portion of a slanted sidewall of each source region, and (b) the semiconductor region along a bottom portion of the contact opening, wherein the conductor layer forms a Schottky contact with the semiconductor region.
摘要:
A field effect transistor is formed as follows. A semiconductor region of a first conductivity type with an epitaxial layer of a second conductivity extending over the semiconductor region is provided. A trench extending through the epitaxial layer and terminating in the semiconductor region is formed. A two-pass angled implant of dopants of the first conductivity type is carried out to thereby form a region of first conductivity type along the trench sidewalls. A threshold voltage adjust implant of dopants of the second conductivity type is carried out to thereby convert a conductivity type of a portion of the region of first conductivity type extending along upper sidewalls of the trench to the second conductivity type. Source regions of the first conductivity type flanking each side of the trench are formed.
摘要:
A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches include a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.