Abstract:
A mass spectrometer system an ion source configured to produce ions and a non-metallic capillary configured to receive at least a portion of the ions from the ion source. The capillary includes an elongated body and multiple bores traversing the elongated body in a longitudinal direction. The bores transport the received ions through the capillary toward a mass analyzer of the mass spectrometer system for detection.
Abstract:
A method and apparatus for processing ions in mass spectrometry is provided. The apparatus includes an ion processing cell having segmented multipole rods and a means for admitting reactive reagent ions to the cell. Provision for timed sequence control of RF and DC voltages to the segmented multipole rods is included. Processing includes trapping analyte ions and subjecting them to selected reactions with reactive reagent ions and/or physical manipulation of the ions by changing the characteristics of the electric field and/or creating discrete regions in the field.
Abstract:
The invention provides a device for introducing ions into the primary ion path of a mass spectrometry system. In general, the device contains an electrical lens having a primary ion passageway and a secondary ion passageway that merges with the primary ion passageway. In certain embodiments, the electrical lens contains a first part and a second part that, together, form the primary ion passageway. The first part of the lens may contain the secondary ion passageway.
Abstract:
A multi dynode device (MDD) for electron multiplication and detection and a hybrid detector using the MDD have high peak signal output currents and large dynamic range while preserving the time-dependent information of the input event and avoiding the generation of significant distortions or artifacts on the output signal. The MDD and hybrid detector overcome saturation problems observed in conventional hybrid detectors by providing a unique electron multiplier portion that avoids the path-length differences. The MDD and hybrid detector can be used in mass spectrometry, in particular, time-of-flight mass spectrometry. The MDD comprises a plurality of dynode plates arranged in a stacked configuration. Each dynode plate in the stack has a plurality of apertures for cascading secondary electrons through the stack. Each aperture comprises a mechanical bias or offset with respect to the apertures in adjacent plates. The offset is such that the electrons will impact with one or more of the dynode plates. The MDD further comprises a power source to provide a voltage bias to the dynode plates. The power source comprises a voltage supply and a voltage divider. Each dynode plate is connected to a tap on the voltage divider such that a voltage gradient is produced along the stack. The MDD can supply high peak currents. The hybrid detector comprises an input portion having a microchannel plate MCP and an output portion having the multi dynode device (MDD). The MCP and MDD are adjacent to one another. The MDD is planar, flat, and compact like that of the MCP, such that important temporal integrity of an input signal event is preserved.
Abstract:
An apparatus for receiving and reflecting ions. The ion mirror of the present invention is integral to a mass spectrometer flight tube and includes a front electrode, middle electrode, and a rear electrode. Each of the three electrodes are designed for receiving and reflecting ions. The electrodes of the ion mirror have a conductive material used for creating electric fields that retard and reflect ions back toward an ion detector. The flight tube may be made of an insulating material such as fused silica or quartz.
Abstract:
A notch filter for selectively removing a target ion with a specific mass-to-charge ratio from an ion beam is provided. The notch filter uses a quadrupole and a power supply for generating an rf electrical potential in the quadrupole. The quadrupole has two pairs of parallel electrodes of opposite polarities. Each pair is comprised of two parallel electrodes having equal electrical potential. The rf electrical potential generated by the power supply is a superposition of an rf quadrupole frequency component and an excision frequency component. The quadrupole has an inlet end and an outlet end and the ion beam traverses from the inlet end to the outlet end. As a result of the rf quadrupole frequency component, ions of above a selected mass-to-charge ratio are guided down the quadrupole. The excision frequency component, which is at the second harmonic of the dominant resonant frequency of the target ion, causes the target ion to resonate and be removed from the ion beam before exiting the quadrupole.
Abstract:
A multimode ionization source includes a resistive filament aligned with an exit cone orifice. The filament generates electrons that bombard molecules near the orifice. In electron impact mode, a pressure regulator selects a low pressure within an ionization chamber and gaseous analyte is injected through a gas inlet and ionized by electron bombardment. In chemical ionization mode, an intermediate pressure of reagent gas established; electrons ionize the reagent gas. Gaseous analyte is introduced is ionized by the reagent gas through chemical interaction. In thermospray mode, a high pressure is established and heated liquid analyte is introduced into the chamber as a spray which is ionized by ion evaporation; in a thermospray/chemical ionization submode, filament activation supplements ion evaporation. Ions produced in all modes can be directed to a mass analyzer for analysis.
Abstract:
An apparatus for analyzing ions is described. The apparatus includes an ion source, an ion trap positioned to receive ions from the ion source; a time of flight mass analyzer, and a detector operatively coupled to the time of flight. The time of flight mass analyzer includes a pulser region, and the pulser region is positioned to receive ions from the ion trap. The apparatus further includes a scanning delay timing circuit in operable relation to the pulser region. The scanning delay timing circuit is adapted to triggering an extraction pulse at the pulser region. Methods of analyzing ions by mass spectrometry are also described.
Abstract:
A multi dynode device (MDD) for electron multiplication and detection and a hybrid detector using the MDD have high peak signal output currents and large dynamic range while preserving the time-dependent information of the input event and avoiding the generation of significant distortions or artifacts on the output signal. The MDD and hybrid detector overcome saturation problems observed in conventional hybrid detectors by providing a unique electron multiplier portion that avoids the path-length differences. The MDD and hybrid detector can be used in mass spectrometry, in particular, time-of-flight mass spectrometry. The MDD comprises a plurality of dynode plates arranged in a stacked configuration. Each dynode plate in the stack has a plurality of apertures for cascading secondary electrons through the stack. Each aperture comprises a mechanical bias or offset with respect to the apertures in adjacent plates. The offset is such that the electrons will impact with one or more of the dynode plates. The MDD further comprises a power source to provide a voltage bias to the dynode plates. The power source comprises a voltage supply and a voltage divider. Each dynode plate is connected to a tap on the voltage divider such that a voltage gradient is produced along the stack. The MDD can supply high peak currents. The hybrid detector comprises an input portion having a microchannel plate MCP and an output portion having the multi dynode device (MDD). The MCP and MDD are adjacent to one another. The MDD is planar, flat, and compact like that of the MCP, such that important temporal integrity of an input signal event is preserved.
Abstract:
An ion acceleration apparatus and method, and a mass spectrometer using the apparatus and method, require only a single pulse generator for the collection and acceleration of ions. The apparatus, method and mass spectrometer are useful in time-of-flight mass spectrometry (TOFMS). The apparatus, method and spectrometer save on manufacturing costs and complexity, without compromising measurement sensitivity or reliability. The ion acceleration apparatus comprises a plurality of conductive plates comprising a pulser electrode, three grids and preferably, a plurality of frames units, in a stacked relationship. The pulser electrode and a third grid form the outside ends of the ion acceleration apparatus. The plates of the stack are spaced apart and electrically insulated from one another. A power source provides fill, pulse and bias voltages to the plates. The power source comprises a pulse generator that provides fill and pulse voltages to the pulser electrode and to a first grid that is adjacent to the pulser electrode. A second grid is electrically connected to ground potential and is between the first grid and the plurality of guard frames. The power source further comprises a voltage source for supplying a fixed high voltage bias to the third grid and preferably to the frame units. During the fill period, analyte ions from an ion source are collected in a fill region between the pulser electrode and the first grid. The pulser electrode and first grid are supplied with a small magnitude voltage of a polarity opposite to a polarity of a charge of the analyte ions. During the pulse period, the analyte ions are induced to move from the fill region and into an acceleration region by the application of the pulse voltage to the pulse electrode and the first grid. The pulse voltage is a large magnitude voltage of the same polarity as the polarity of the charge on the analyte ions. A field produced by the fixed voltage bias applied to the third grid and guard frames accelerates the analyte ions once they enter the acceleration region.