摘要:
A plurality of free-standing resilient contact structures (spring elements) are mounted to a surface of a carrier substrate. The carrier substrate is mounted to a surface of a semiconductor device, or one or more unsingulated semiconductor dies. Bond pads of the semiconductor device are connected to the spring elements by bond wires extending between the bond pads and terminals associated with the spring elements. The carrier substrate is mounted to one or more semiconductor devices prior to the semiconductor devices being singulated from a semiconductor wafer upon which they are formed. Resilience and compliance to effect pressure connections to the semiconductor device are provided by the spring elements extending from the carrier substrate, per se. The carrier substrate is pre-fabricated, by mounting the spring elements thereto prior to mounting the carrier substrate to the semiconductor device(s), or vice-versa.
摘要:
A process for providing a plurality free-standing resilient contact structures (spring elements) mounted to a surface of a carrier substrate. The carrier substrate is mounted to a surface of a semiconductor device, or one or more unsingulated semiconductor dies. Bond pads of the semiconductor device are connected to the spring elements by bond wires extending between the bond pads and terminals associated with the spring elements. The carrier substrate is mounted to one or more semiconductor devices prior to the semiconductor devices being singulated from a semiconductor wafer upon which they are formed Resilience and compliance to effect pressure connections to the semiconductor device are provided by the spring elements extending from the carrier substrate, per se.
摘要:
A natural-resource-conservative, environmentally-friendly, cost-effective, leadless semiconductor packaging apparatus, having superior mechanical and electrical properties, and having an optional windowed housing which uniquely seals and provides a mechanism for viewing the internally packaged integrated semiconductor circuits (chips/die). A uniquely stamped and/or bent lead-frame is packaged by a polymeric material during a unique compression-molding process using a mold, specially contoured to avoid the common “over-packaging” problem in related art techniques. The specially contoured mold facilitates delineation of the internal portions from the external portions of the lead-frame, as the external portions are the effective solderable areas that contact pads on a printed circuit board, thereby avoiding a laborious environmentally-unfriendly masking step and de-flashing step, streamlining the device packaging process. The compression-mold effectively provides a compressive sealing orifice from which the effective solderable areas of the lead-frame may extend and be exposed and, thus, avoid being coated with the polymer which is uniquely contained by the mold for packaging the internal portions of the lead-frame. The lead-frame is uniquely stamped and/or bent, conforming it to electro-mechanical requirements of a particular semiconductor product. By uniquely stamping and/or bending, the related art “half-etching” of the lead for conforming it to electromechanical requirements of the packaged semiconductor product is no longer required. Environmental enhancement is achieved by conserving natural resources and by eliminating hazardous material by-products otherwise liberated in related art packaging techniques.
摘要:
A natural-resource-conservative, environmentally-friendly, cost-effective, leadless semiconductor packaging apparatus, having superior mechanical and electrical properties, and having an optional windowed housing which uniquely seals and provides a mechanism for viewing the internally packaged integrated semiconductor circuits (chips/die). A uniquely stamped and/or bent lead-frame is packaged by a polymeric material during a unique compression-molding process using a mold, specially contoured to avoid the common “over-packaging” problem in related art techniques. The specially contoured mold facilitates delineation of the internal portions from the external portions of the lead-frame, as the external portions are the effective solderable areas that contact pads on a printed circuit board, thereby avoiding a laborious environmentally-unfriendly masking step and de-flashing step, streamlining the device packaging process. The compression-mold effectively provides a compressive sealing orifice from which the effective solderable areas of the lead-frame may extend and be exposed and, thus, avoid being coated with the polymer which is uniquely contained by the mold for packaging the internal portions of the lead-frame. The lead-frame is uniquely stamped and/or bent, conforming it to electro-mechanical requirements of a particular semiconductor product. By uniquely stamping and/or bending, the related art “half-etching” of the lead for conforming it to electro-mechanical requirements of the packaged semiconductor product is no longer required. Environmental enhancement is achieved by conserving natural resources and by eliminating hazardous material by-products otherwise liberated in related art packaging techniques.