摘要:
This invention relates to methods for altering the splicing of mRNA in cells. In particular, this invention also relates to methods for increasing the ratio of wild type to misspliced forms of mRNA and corresponding encoded proteins in cells possessing a mutant gene encoding either the i) misspliced mRNA corresponding to the mutant protein or ii) a component in the splicing machinery responsible for processing the misspliced mRNA. In addition, this invention relates to treating individuals having a disorder associated with a misspliced mRNA, such as Familial Dysautonomia or Neurofibromatosis 1, by administering to such an individual a cytokinin such as kinetin.
摘要:
This invention relates to methods for altering the splicing of mRNA in cells. In particular, this invention also relates to methods for increasing the ratio of wild type to misspliced forms of mRNA and corresponding encoded proteins in cells possessing a mutant gene encoding either the i) misspliced mRNA corresponding to the mutant protein or ii) a component in the splicing machinery responsible for processing the misspliced mRNA. In addition, this invention relates to treating individuals having a disorder associated with a misspliced mRNA, such as Familial Dysautonomia or Neurofibromatosis 1, by administering to such an individual a cytokinin such as kinetin.
摘要:
This invention relates to methods for altering the splicing of mRNA in cells. In particular, this invention also relates to methods for increasing the ratio of wild type to misspliced forms of mRNA and corresponding encoded proteins in cells possessing a mutant gene encoding either the i) misspliced mRNA corresponding to the mutant protein or ii) a component in the splicing machinery responsible for processing the misspliced mRNA. In addition, this invention relates to treating individuals having a disorder associated with a misspliced mRNA, such as Familial Dysautonomia or Neurofibromatosis 1, by administering to such an individual a cytokinin such as kinetin.
摘要:
This invention relates to methods for altering the splicing of mRNA in cells. In particular, this invention also relates to methods for increasing the ratio of wild type to misspliced forms of mRNA and corresponding encoded proteins in cells possessing a mutant gene encoding either the i) misspliced mRNA corresponding to the mutant protein or ii) a component in the splicing machinery responsible for processing the misspliced mRNA. In addition, this invention relates to treating individuals having a disorder associated with a misspliced mRNA, such as Familial Dysautonomia or Neurofibromatosis 1, by administering to such an individual a cytokinin such as kinetin.
摘要:
This invention relates to methods and compositions useful for detecting mutations which cause Familial Dysautonomia. Familial dysautonomia (FD; Riley-Day syndrome), an Ashkenazi Jewish disorder, is the best known and most frequent of a group of congenital sensory neuropathies and is characterized by widespread sensory and variable autonomic dysfunction. Previously, we mapped the FD gene, DYS, to a 0.5 cM region of chromosome 9q31 and showed that the ethnic bias is due to a founder effect, with >99.5% of disease alleles sharing a common ancestral haplotype. To investigate the molecular basis of FD, we sequenced the minimal candidate region and cloned and characterized its 5 genes. One of these, IKBKAP, harbors two mutations that can cause FD. The major haplotype mutation is located in the donor splice site of intron 20. This mutation can result in skipping of exon 20 in the mRNA from FD patients, although they continue to express varying levels of wild-type message in a tissue-specific manner. RNA isolated from patient lymphoblasts is primarily wild-type, whereas only the deleted message is seen in RNA isolated from brain. The mutation associated with the minor haplotype in four patients is a missense (R696P) mutation in exon 19 that is predicted to disrupt a potential phosphorylation site. Our findings indicate that almost all cases of FD are caused by an unusual splice defect that displays tissue-specific expression; and they also provide the basis for rapid carrier screening in the Ashkenazi Jewish population.
摘要:
A novel gene, huntingtin, is described, encoding huntingtin protein, recombinant vectors and hosts capable of expressing huntingtin. Methods for the diagnosis and treatment of Huntington's disease are also provided.
摘要:
The present invention relates, in general, to a novel transport protein, IT10C3. In particular, the present invention relates to nucleic acid molecules coding for IT10C3; IT10C3 polypeptides; recombinant nucleic acid molecules; cells containing the recombinant nucleic acid molecules; antisense IT10C3 nucleic acid constructs; antibodies having binding affinity to an IT10C3 polypeptide; hybridomas containing the antibodies; nucleic acid probes for the detection of IT10C3 nucleic acid; a method of detecting IT10C3 nucleic acid or polypeptide in a sample; and kits containing nucleic acid probes or antibodies.
摘要:
This invention relates to methods and compositions for detecting mutations causing Familial Dysautonomia (FD), an Ashkenazi Jewish disorder characterized by widespread sensory and variable autonomic dysfunction. Previously, we mapped the FD gene, DYS, to a 0.5 cM region of chromosome 9q31. We sequenced the minimal candidate region and cloned and characterized its 5 genes. IKBKAP harbors two mutations that can cause FD. The major haplotype mutation is located in the donor splice site of intron 20. This mutation can result in skipping of exon 20 in the mRNA from FD patients, although they continue to express varying levels of wild-type message in a tissue-specific manner. RNA isolated from patient lymphoblasts is primarily wild-type, whereas only deleted message is seen in RNA from isolated brain. The mutation associated with the minor haplotype is a missense (R696P) mutation in exon 19 that is predicted to disrupt a potential phosphorylation site.
摘要:
The present invention relates, in general, to novel TPR-containing genes, tpr1 and tpr2. In particular, the present invention relates to nucleic acid molecules coding for tpr1 and tpr2; purified tpr1 and tpr2 polypeptides; recombinant nucleic acid molecules; cells containing the recombinant nucleic acid molecules; antibodies having binding affinity specifically to tpr1 and tpr2 polypeptides; hybridomas containing the antibodies; nucleic acid probes for the detection of tpr1 and tpr2; a method of detecting the novel tpr1 and tpr2 nucleic acids or polypeptides in a sample; and kits containing nucleic acid probes or antibodies. Therapeutic uses for the tpr1 and tpr2 polypeptides are also provided.
摘要:
A novel tumor suppressor protein, merlin, is described, including DNA sequences encoding merlin, and recombinant vectors and hosts capable of expressing merlin. Method for the diagnosis and treatment of merlin-associated tumors, and for the diagnosis and treatment of the disease neurofibromatosis 2 (NF2) are also provided.